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Preface 
 
What’s New 
 
This major revision is the first of its kinds that is not backward compatible with any V1.x versions dating 
back to the original V1.0 release by The MathWorks, Inc., in 1993.   
 
If you are a new user, then skip this part and proceed directly to the Introduction.  However, we strongly 
recommend that previous users read this section first. 
 
To begin, the use of LTI and FRD models and arrays from the Control Toolbox that began in V2.0 is now 
a Toolbox standard.  All functions accept only these models as input arguments and compute output 
arguments in the same format.  The exceptions to this rule are scalar arguments and matrix bounds.  We 
list below all functions that have been removed from V2.5 and are no longer supported. 
 
Owing to the ease by which algebraic manipulations available with LTI/FRD models and arrays, the 
following functions are no longer needed and have been removed from v2.5: 
 

Conversions 
cp2mp Complex matrix to magnitude/phase real matrices 
mp2cp Magnitude/phase real matrices to complex matrix 

 
and 
 

General Utility 
freqcp Compute continuous-time frequency response sets 
dfreqcp Compute discrete-time frequency response sets 
qftdefs User-defined defaults 

 
The above operations can be easily carried in the command line.  For example, the Control Toolbox’s 
freqresp now computes the frequency response of a plant set (i.e., LTI or FRD array). 
 
However, certain algebraic manipulations with arrays having different numbers of elements are not 
supported by the Control Toolbox and will not produce correct results.  Hence, the following functions 
have been removed 
 

Arithmetic 
addcp Addition of frequency response sets 
addnd Addition of transfer function num/den sets 
mulcp Multiplication of frequency response sets 
mulnd Multiplication of transfer function num/den sets 
clcp Compute closed-loop frequency response set 
clnd Compute closed-loop transfer function num/den set 

 
and in their place we now have 
 

Arithmetic 
addtmpl Add LTI/FRD arrays 
cltmpl Closed-loop LTI/FRD arrays from open-loop arrays 
multmpl Multiply LTI/FRD arrays 
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Since LTI/FRD model objects now include sampling time for discrete-time systems, the following 
functions are no longer needed and have been removed 
 

Interactive Design Environments 
dlpshape Discrete-time controller design 
dpfshape Discrete-time pre-filter design 

 
lpshape and pfshape now work in continuous-time and discrete-time settings. 
 
The duplication of example files have been simplified.  The following set of demo files has been removed 
 

Examples 
qftdemo Special demo facility for the examples in Chapter 5 

 
Of course, the main set of M-files comprising of all examples is still available from qftex*.m and has 
been updated to comply with V2.5. 
 
In addition, in many functions the number of input arguments is now smaller.  For example, previous 
calls to lpshape had this form 
 

lpshape(w,bdb,numP0,denP0,delay0,numC0,denC0,phs) 

 
while in V2.5 the form is much simpler 
 

lpshape(w,bdb,P0,C0,phs) 

 
We recommend that you familiarize yourself with the new call formats and make use of our extensive set 
of updated example files to observe correct use of LTI/FRD arrays in this Toolbox. 
 
Organization 
 
This manual was written such that any user, from the practicing engineer to the researcher in academia, 
can quickly learn the basic concepts behind QFT.  The only requirements are a working knowledge of 
classical frequency-domain concepts commonly taught at a junior/senior undergraduate course.  
Familiarity with discrete-time systems is required for discrete-time QFT design. 
 
Chapter 2, The Feedback Problem, begins with two real-world examples, a compact disc mechanism and 
active vibration isolation in an engine to illustrate the need for feedback in general and the flexibility of 
QFT for a wide range of problems.  It then describes how to formulate a QFT design problem for such 
systems: choose a feedback structure, model the process dynamics (with or without uncertainty) and 
finally define appropriate frequency-domain specifications. 
 
Chapter 3, Feedback Design with QFT, leaps right into the QFT design procedure and leaves some of the 
theoretical details to Chapter 4.  It begins with an introduction of the various steps in a typical design: 
generation of plant templates, computation of bounds, loop shaping and analysis.  A detailed design is 
then developed for a generic robust performance problem to illustrate QFT design in general and use of 
the Toolbox functions in particular.  The presentation in this chapter focuses first on continuous-time 
systems and then repeats the presentation for discrete-time systems. 
 
Chapter 4, Using the Nichols Chart, provides theoretical background on stability analysis of feedback 
systems using Nichols charts (Nichols charts are the domain of choice for QFT designs).  You will first 
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learn how the usual Nyquist plot in the complex plane is mapped into a similar plot in a Nichols chart.  
The stability criterion used with Nichols charts is then introduced as related to its counterpart, the Nyquist 
stability criterion in the complex plane.  This criterion is illustrated with several examples.  The notions of 
model uncertainty and plant templates are defined and are followed by the extension to a robust stability 
criterion.  The section ends with a similar presentation of stability, uncertainty and robust stability 
concepts for discrete-time systems. 
 
Chapter 5, Examples, includes fourteen examples illustrating a wide range of QFT designs.  The examples 
cover continuous-time and discrete-time systems, plants with different types of uncertainties, single-loop, 
cascaded-loop and multi-loop systems, and some industrial problems. 
 
Chapter 6, Bounds and Loop Shaping, consists of a detailed description of the bound computation 
functions and the special functions that create CAD environments for controller (loop-shaping) and pre-
filter design. 
 
Chapter 7, Reference, is the reference chapter that describes the Toolbox functions.  Details of all the 
Toolbox functions follow in alphabetical order. 
 
Two appendices are included: A Glossary and B Bibliography. 
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1 Introduction 
 
About Quantitative Feedback Theory 
 
In the 1960's, as a continuation of the pioneering work of Bode, Isaac Horowitz introduced a frequency-
domain design methodology [1] that was refined in the 1970’s to its present form, commonly referred to 
as the Quantitative Feedback Theory (QFT) [2,3].  The QFT is an engineering method devoted to 
practical design of feedback systems.1 
 
Control design necessary to accomplish performance specifications in the presence of uncertainties (plant 
changes and/or external disturbances) is a key consideration in any real feedback design.  In QFT, one of 
the main objectives is to design a simple, low-order controller with minimum bandwidth.  Minimum 
bandwidth controllers are a natural requirement in practice in order to avoid problems with noise 
amplification, resonances and unmodeled high frequency dynamics.  In most practical design situations 
iterations are inevitable, and QFT offers direct insight into the available trade-off between controller 
complexity and specifications during such iterations.  QFT can be considered as a natural extension of 
classical frequency-domain design approaches. 
 
The foundation of QFT is the fact that feedback is principally needed when the plant is uncertain and/or 
there are uncertain inputs (disturbances) acting on the plant.  The motivation for QFT is feedback design 
in practice – an evolving process in which the designer must trade-off between complexity and 
specifications.  The specific characteristics of QFT are: 
 
• The amount of feedback is tuned to the amount of plant and disturbance uncertainty and to the 

performance specifications. 
 
• Design trade-offs at each frequency are highly transparent between stability, performance, plant 

uncertainty, disturbance level and controller complexity and bandwidth. 
 
• The method extends highly intuitive classical frequency-domain loop shaping concepts to cope with 

simultaneous specifications and plants with uncertainties. 
 
The QFT philosophy for feedback design fits a wide range of applications: 
 
• Plant Uncertainty.  The controller should meet specifications in spite of variations in the parameters of 

the plant model.  For example, the first mode’s natural frequency in a compact disc drive may vary by 
±5% from its nominal value due to manufacturing tolerances and a wide range of operating 
temperatures (if used in a car).  QFT works directly with such uncertainties and does not require any 
particular representation. 

 
• Plant Models from Experiments.  Many systems have complex dynamics and are very difficult to 

model analytically.  For example, the dynamics of the radial loop in a compact disc or a disk drive 
mechanism contain a large number of mechanical resonances – even a detailed finite-element analysis 
cannot generate a reasonable model for control design with tight specifications.  A common approach is 
to run physical experiments and compute directly the frequency response of the plant.  Frequency 
response uncertainty sets are then created and QFT works with such sets without requiring rational 
plant identification. 

 
                                                 
1 Recent books on QFT are [30]-[32]. 
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• Linear Plants from Nonlinear Dynamics.  Unlike the conventional small signal linearization about an 
operating point, Horowitz's idea is to replace the nonlinear plant with a set of linear, time-invariant 
(LTI) plants using assumed input and output responses.  The design (via standard QFT procedure) 
relies on Schauder fixed point theorem and Homotopic invariance to show stability of the nonlinear 
system (the mathematics is rather deep compared with that used in LTI systems).  However, from the 
control engineer’s viewpoint, the actual design procedure is as straightforward as in the LTI case. 

 
• Several Performance Specifications.  The design problem consists of several closed-loop performance 

specifications and the objective is to synthesize a controller to meet simultaneously all specifications (a 
robust performance problem).  QFT reveals via QFT bounds the “toughness” of each specification 
relative to others.  Moreover, real life specifications are often incomplete, e.g., in a noise control 
system noise reduction should be at least 24 dB in the range [100,500] Hz.  QFT works with such 
incomplete form and does not require specifications to be defined at each frequency from zero to 
infinity. 

 
• Hardware Constraints.  In real life controllers are constrained by hardware. For example, the DSP 

board limits the locations of the controller’s poles to be less than 100 Hz, limits the number of digits 
that can be used to represent the controller’s coefficients or limits the controller’s bandwidth.  With 
QFT you quickly test if a particular controller (e.g., proportional) can solve the problem. 

 
The above provided a brief background on QFT and presented some possible scenarios where this 
Toolbox can be useful in your feedback design.  No prior familiarity with QFT is required with the 
exception of classical frequency-domain concepts.  This manual is intended to provide you with the basic 
understanding of QFT as necessary to use the Toolbox effectively.  The more you design with the 
Toolbox, the more you will learn about QFT.  We recommend that you read the entire manual before 
beginning work with the Toolbox.  For a detailed teaching reference of QFT please refer to [3]. 
 
Finally, a few words about the suitability of QFT to different classes of problems.  The QFT method, 
originally developed for uncertain LTI systems single-loop systems, has been extended to cascaded loop 
systems and multi-loop systems using a sequential loop closure approach.  This Toolbox focuses on a 
class of feedback problems that involve uncertain, single-loop design (single-loop and decentralized 
systems).  The Toolbox can also be used to solve multi-loop problems such as cascaded-loop and 
sequentially closed multi-loop systems but familiarity with the design algorithms is required (see 
Examples Example 7: Inner-Outer Cascaded Design, Example 8: Outer- Inner Cascaded Design and 
Example 15: Multi-Loop Design in Examples).  QFT has also been successfully applied to time-varying 
and nonlinear systems (e.g., see [3]). 
 



 

  

2 The Feedback Problem 
 
Motivating Examples 
 
The two examples in this chapter serve two purposes: to establish the need, in general, for feedback and to 
illustrate the suitability of QFT for a wide range of real-world problems.  These examples belong to a 
particular class of problems from two major classes found in applications: 
 
• The first class consists of “well defined” problems where the plant model (including uncertainty) is 

known with great accuracy and the performance specifications are defined from zero to infinite 
frequency. 

• The second class includes plants for which available models are not sufficiently accurate for control 
design or may not even exist.  And the specifications may be defined only over a finite bandwidth, 
e.g., in an engine vibration control we may require disturbance rejection (acceleration 
transmissibility) of -20 dB in the working frequency band on [100,200] Hz.  In the second class, as in 
the two examples below, the best models for control design are obtained from measurements. 

 
To execute a QFT design you are not required to identify a plant model from the data nor should you 
define specifications in any specific format over the whole frequency range from zero to infinity.  QFT is 
equally suited to solve problems from either class; however, the ability to attack problems from the 
second class in a direct manner is precisely what renders QFT so powerful in applications.  Given the fact 
that control design in applications is an iterative process, a control design/implementation/redesign 
iteration cycle can be performed efficiently using QFT, since QFT does not require a “well defined” 
problem after each implementation. 
 
Compact Disc 
 
A compact disc (CD) player (Fig. 1) is an optical decoding device that reproduces high-quality data from 
a digitally coded signal recorded as a spiral shaped track on a reflective disc.   

 
disc

ω

main

radial arm
optical pick-up

φmotor

motor
radial

 
Figure 1: A schematic view of a Compact Disc mechanism 

 
The difficulty in achieving good track following is due to disturbances and plant uncertainty.  
Disturbances are caused, for example, by external shocks when the CD is used in a car going over a bump 
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or in a portable CD used by a runner.  Plant uncertainty is always a factor in mass production due to 
manufacturing tolerances.  Feedback is clearly required in order to achieve good track following. 
 
Figure 2 presents a block diagram of the radial control loop.  The difference between the track position 
and the laser beam spot position on the disc is detected by the optical system; it generates a radial error eR 
signal via a gain Gopt.  A controller K feeds the radial motor with the current Irad.  This in turn generates a 
torque resulting in an angular acceleration.  The transfer function from the current Irad  to the angular 
displacement φ of the arm is called Gact(s)  A (nonlinear) gain Garm relates the angular displacement with 
the spot movement in the radial direction.  Only the control-error signal eR is available for measurement.  
Assuming constant radial velocity ω, the goal is to control the position of the spot on the disc. 
 

 
 
 
 
 
 
 
 

Figure 2: Block diagram of the radial loop 
 
Now that the feedback structure is defined, the next step involves modeling of the radial loop dynamics.  
With the Toolbox you can define the model either as a rational transfer function or in terms of its 
frequency response (possibly from measurements).  The CD dynamics, difficult to model analytically, are 
characterized by mechanical vibrations that fall within the controlled bandwidth.  The nominal dynamics 
(Fig. 3) were found by averaging over several hundreds frequency response tests.  At low frequencies the 
actuator transfer function from current input Irad to position error output eR is a critically stable system 
with a phase lag of 180° (rigid body mode).  The erratic low frequency response is indicated by low 
coherence.  At higher frequencies the measurement shows parasitic dynamics due to mechanical 
resonances of the radial arm and mounting plate (flexible bending and torsional modes). 
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Figure 3: Measured nominal radial open-loop frequency response 

 
Due to manufacturing variations, we are required to define uncertainty model.  Important uncertain 
parameters in the dynamics are three undamped natural frequencies with nominal values of 0.8, 1.62 and 
4.3 kHz.  To quantify possible variations, we allow each natural frequency to vary independently by 
±2.5% around its nominal value.  The plant frequency response set can be computed from the measured 

-
track spot
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data (nominal case) and from the above parametric variations (see Example 14: CD Mechanism 
(Sampled-data)). 
 
Now that the plant dynamics are defined, you can consider the feedback design objectives.  The radial 
loop design must take into account several conflicting factors: 
 
• Accommodation of mechanical shocks acting on the player, 
• Achievement of the required disturbance attenuation at the rotational frequency of the disc, 

necessary to cope with significant disc eccentricity, 
• Playability of discs containing faults, 
• Audible noise generated by the actuator, and 
• Power consumption. 

 
In general, design objectives will be a combination of time-domain and frequency-domain criteria.  The 
QFT, being a frequency-domain method, requires frequency-domain specifications.  In many cases, it is 
possible to translate “soft” time-domain criteria, such as overshoot and settling time, into appropriate 
frequency-domain specifications.  Although, satisfaction of the frequency-domain specifications cannot 
guarantee the original time-domain criteria, this approach was found to work in many design examples.  
An excellent description of the possible translation approaches is given in [3]. 
 
The above listed criteria can be formulated in the frequency domain.  When using QFT, you need not 
define the specifications in any specific format such as rational functions or weighting matrices.  The 
specifications are: (a) robust stability, (b) gain and phase with margins 
 

( ) 3 for all uncertainty 0
1

, ,arm act opt

arm act opt

G G KG
j

G G KG
ω ≤ ω ≥

+
 

 
and (c) robust sensitivity such that the closed-loop sensitivity function meets the magnitude specification 
shown in Fig. 4. 
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Figure 4: Robust sensitivity reduction specification 

 
Finally, the feedback problem is to design the controller, K, such that the above specifications are met. 
 
In classical frequency-domain designs, stability margins were related to the gain and phase distances 
between the open-loop plot and the critical point (-1,0).  An alternative, yet equivalent way to specify 
such margins is via maximal amplitudes of certain closed-loop relations (see discussion in Robust 
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Stability (Margins) Bounds).  In this problem, to ensure reasonable stability margins, there should be no 
large peaking in the sensitivity function (track to error) and the complementary sensitivity function (track 
to spot) at any frequency over all possible parameter variations.  A “tough” performance specification is 
placed on the sensitivity function in the frequency band of [0,200] Hz. 
 
This problem appears in Example 14: CD Mechanism (Sampled-data). 
 
Engine Active Vibration Isolation 
 
This example involves single-axis active vibration isolation (courtesy of LORD Corporation, Cary, NC).  
The experimental plant frequency response is from an accelerometer mounted on a structure and an active 
mount connecting the structure to a vibrating engine.  The feedback system shown in Fig. 5 has the open-
loop plant P consisting of the combined engine + structure + mount + amplifier dynamics. 
 

 
 
 
 
 
 
 
 
 

Figure 5: The active vibration isolation feedback system 
 
The frequency response of the open-loop plant is shown Fig. 6. 
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Figure 6: Measured open-loop frequency response 

 
There are two primary control objectives.  The first is stability with reasonable margins 
 

( ) 1 2 0
1

. ,
PG j
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ω ≤ ω ≥
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and the second is disturbance rejection (transmissibility of disturbance acceleration to measured 
acceleration) of -20 dB in the working frequency band 
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The interaction between the controller and the plant dynamics outside this frequency range should be 
minimized.  Due to hardware constraints, the controller cannot have more than five poles.   
 
This problem appears in Example 11: Active Vibration Isolation. 
 
Formulation of the QFT Design Problem 
 
When the response of an open-loop process does not meet its desired behavior due to uncertainty in its 
dynamics, and/or uncertainty in the input signals (e.g., disturbances), you should consider using feedback.  
The Toolbox focuses on feedback problems described in Fig. 7 where the controller to be designed is 
single input-output.  The structure shown in Fig. 7 covers many single-loop systems, cascaded-loop and 
multi-loop systems designed sequentially or decentralized.  Note that Fig. 7 equally represents 
continuous-time or discrete-time systems (i.e., P can be P(s) or P(z)).   
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 7: The single-loop feedback system 
 
The feedback system shown in Fig. 7 consists of the plant (open-loop process dynamics), the controller to 
be designed (e.g., PID) and possibly another transfer function referred to in the manual as a second known 
transfer function.  With respect to Fig. 7, if the controller to be designed is G (in the forward path), then H 
could be used to denote sensor dynamics, while if the controller is H (in the feedback path), G could be 
used to represent other dynamics. 
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Formulating Frequency-Domain Specifications 
 
The QFT design, performed in the frequency domain, follows very closely classical designs using Bode 
plots.  The model for the open-loop dynamics can either be fixed or include uncertainty.  If the problem 
requires that the specifications be met with the uncertain dynamics, we call it a robust performance 
problem.  That is, the performance specifications must be satisfied for all possible cases admitted by the 
specific uncertainty model.  Various descriptions of uncertainty models in the Toolbox are the focus of 
the next section. 
 
You can place performance specifications on any single-loop closed-loop relation as shown in Tables 1 
and 2 (F = 1 when controller bounds are computed).  Specifications in the Toolbox are entered in terms of 
frequency responses.  Note that, when possible, the dependency on the Laplace variable, s, or the 
frequency, ω, is omitted for presentation convenience.   
 

Table 1:  Single-loop specification types 

 
Specification Example of application Toolbox notation 

(ptype) 

11
PGHF Ws

PGH
≤

+
 

gain and phase margins 
(with sensor dynamics) 

1 

2
1

1
F Ws

PGH
≤

+
 

sensitivity reduction 2 

31
PF Ws
PGH

≤
+

 
disturbance rejection at 
plant input 

3 

41
GF Ws
PGH

≤
+

 
control effort 
minimization 

4 

51
GHF Ws
PGH

≤
+

 
control effort (with 
sensor dynamics) 

5 

61
PGF Ws
PGH

≤
+

 
tracking bandwidth (with 
sensor dynamics) 

6 

7 71a b
PGWs F Ws
PGH

≤ ≤
+

 
classical 2-DOF QFT 
tracking problem 

7 

81
HF Ws
PGH

≤
+

 
rejection of disturbance at 
plant output (with sensor 
dynamics) 

8 

91
PHF Ws
PGH

≤
+

 
rejection of plant input 
disturbances (with sensor 
dynamics) 

9 

 
 
In this table, Wsi denotes the specification placed on the magnitude of the transfer function, and where 
ptype = i is used as an input argument in many Toolbox functions to define the specification of interest. 
 
To illustrate use of Table 1, in a continuous-time setting, the sensitivity reduction specification shown in 
Fig. 4 looks like 
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where the real valued Ws(ω) takes on the frequency dependent values as in Fig. 4. 
 
A similar situation exists in a discrete-time setting.  A sensitivity reduction problem would look like ( st  
denotes sampling time) 
 

( ) ( ) [ ]1
0

1
,sj ts sW , z e , /t

PGH
z ω≤ ω = ω∈ π

+
. 

 
As mentioned above, the Toolbox can also be used in a sequential design of cascaded-loop and multiple-
loop systems that involve single-loop design at each design step.  Advanced QFT users with knowledge 
of relevant algorithms can use the following linear fractional transformations as general problem settings:  
 

Table 2:  Multiple-loop specification types 

 
Specification Example of application Toolbox 

notation 
(ptype) 

10Ws
DGC
BGA

≤
+
+  

inner-loop design of a 
cascaded system with 
two loops 

10 

11Ws
DGC
GBA

≤
+
+  

single-loop design in a 
multi input-output 
problem 

11 

 
Note that with ptype=10, genbnds can be used to solve any of the problems in Table 1 above except 
ptype=7.  The input arguments, A, B, C and D are function of the various plants and controllers in 
cascaded-loop and multi-loop systems.  For example, with ptype=10 and A = 0, B = H, C = 1 and D = 
PH is the same as the problem in Table 1 above with ptype=5. 
 
Formulating Open-Loop Dynamics Description 
 
Most functions require input arguments in terms of their frequency responses.  The open-loop dynamics 
can be defined in two ways: 
 
1. A model (e.g., transfer function) when it is known. 
2. A frequency response when only the measured frequency response data is known. 
 
There are two limitations imposed when frequency responses are used.  Closed-loop stability cannot be 
analyzed by the algorithm and analysis of the closed-loop response is limited to the fixed frequency 
vector.  In many cases you can easily analyze stability by counting crossings in the Nichols chart (see 
Using the Nichols Chart) 
 
If the open-loop system description does not include uncertainty, then a transfer function model can be 
defined using a numerator and denominator pair of row vectors or a complex frequency response row 
vector.  Both forms are standard MATLAB format.  If you have a state-space model, then you can convert 
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it to a transfer function model or compute its frequency response.  Due to numerical issues, you should 
avoid use of transfer functions for high-order systems. 
 
A more interesting case occurs when the system description includes uncertainty.  The frequency 
response of an uncertain dynamics is defined in this Toolbox by a complex frequency response matrix, 
where each row denotes the response of single case.  The transfer function model of an uncertain system 
can be defined as follows.  We first consider the continuous-time case, follow with the discrete-time case, 
and finally discuss their specific data formats within the Toolbox. 
 
Continuous-Time 
 
A continuous-time uncertain transfer function model can have parametric, non-parametric or mixed 
parametric and non-parametric structures.  Parametric uncertainty implies specific knowledge of 
variations in parameters of the transfer function.  For example, consider the set 
 

( )
( )

[ ] [ ]: 1 10 1 10, , ,P kaP s k a
s s a

  = = ∈ ∈ 
+  

. 

 
Similarly, a parametric transfer function is also one whose numerator and denominator coefficients lie in 
intervals. 
 
A non-parametric uncertainty is used in several cases: (1) when the exact nature of uncertainty cannot be 
correlated to the model’s parameters, (2) in conjunction with measurements and robust identification, and 
(3) to simplify solving the feedback design problem.   
 
One possibility for defining your uncertain dynamics is to directly measure the frequency response of the 
process using an experiment.  You can end up with a set of responses if the measurements were made 
with several plants that are similar but are not exactly the same.  For example, the frequency response of 
two similar disk drives should be expected to be different due to manufacturing tolerances.  Also, if 
measurements were taken at different operating points (for nonlinear processes) you will end up with a 
response for each operating point.  Hence, your uncertain dynamics will be described by 
 

( ){ }:  1,P iP j i n= ω = …  
 
where n denotes the number of separate measurements. 
 
Another structure of a non-parametric transfer function considered here is 
 

( ) ( ) ( )( ) ( ) ( ) ( ){ }0 1 : stable,P m m m mP s P s s j R s  = = + ∆ ∆ ω < ω ∆ . 
 

In addition, in the Toolbox we allow the plant set, P , to include mixed uncertainties (both parametric 
and non-parametric).  In such a case, combining the above models suggests the following plant familyP  
with mixed uncertainty: 
 

( )
( ) [ ] [ ] ( ) ( ) ( )1 :  1 10 1 10 , stable, , , ,P m m m m

kaPs s k a j R s
s s a

  = = + ∆ ∈ ∈ ∆ ω < ω ∆ 
+  

. 

 
The difference between the two models, parametric and non-parametric, has a very important 
consequence in control design.  Whenever possible use a parametric over a non-parametric model.  The 
reason is that non-parametric representations ignore specific prior knowledge of the phase of the uncertain 
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plant.  To see this point, consider the above parametric plant.  Let the nominal plant be at the values a = k 
= 10.  The frequency response sets of the parametric uncertain plant are shown in Fig. 8 at frequencies ω 
= 0.5,5,25,90 rad/sec.  Only the boundaries of each response set are shown (solid lines); however, each 
point within the solid lines is also part of the set.  A non-parametric representation for this plant is 
obtained by selecting the radius function Rm(ω) such that at each frequency the non-parametric frequency 
response set forms a circle (in the complex-plane) that encloses the parametric response set.  One such 
radius function is 
 

/ 91 1( ) 0 9
/1 001 1
.

.
.m

jR
j

ω +
ω =

ω +
. 

 
On a Nichols chart, the circle becomes an ellipse, and the non-parametric frequency response sets for ω = 
0.5,5,25,90 rad/sec are shown in Fig. 8 with a dashed line superimposed over the parametric sets. 
 

ω=.5

ω=5

ω=25

ω=90

o - nominal
dash - non-parametric
solid - parametric

o

o

o

o

dB

degree  
Figure 8: Parametric and non-parametric frequency response sets 

 
Of course, the choice of the nominal plant affects the level of over-bounding.  
 
At a fixed frequency, the plant’s frequency response set (regardless of the uncertainty model) is called a 
template.  Templates are often obtained directly from frequency response measurements. 
 
Discrete-Time 
 
One possibility for defining your uncertain dynamics is to directly measure the frequency response of the 
process using an experiment.  You can end up with a set of responses if the measurements were made 
with several plants that are similar but are not exactly the same.  For example, the frequency response of 
two similar disk drives should be expected to be different due to manufacturing tolerances.  Also, if 
measurements were taken at different operating points (for nonlinear processes) you will end up with a 
response for each operating point.  Hence, your uncertain dynamics will be described by 
 

( ){ }:  1   , ,P
si tP j i n π= ω = … ω ≤ . 
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where n denotes the number of separate measurements and st  denotes sampling time.  Note that for a 
discrete-time design the sampling frequency used for measuring the responses must be chosen to match 
the design. 
 
A discrete-time uncertain transfer function can have parametric, non-parametric or mixed parametric and 
non-parametric structures.  Parametric uncertainty implies specific knowledge of variations in parameters 
of the transfer function.  For example 
 

( ) [ ] [ ]{ }: 1 10 0 8 0 9, , . , .P kzP z k a
z a

= = ∈ ∈
−

 

 
Similarly, a parametric transfer function is also one whose numerator and denominator coefficients lie in 
intervals. 
 
The structure of a non-parametric transfer function considered here can be a set of discrete-time 
frequency responses or  

 

( ) ( ) ( )( ) ( ) ( ) ( ){ }0 1 : ,P sj t
m m m mP z P z z z e R z stableω= = + ∆ ∆ = < ω ∆  

 
In addition, in the Toolbox we allow the plant, P, to include mixed uncertainties (both parametric and 
non-parametric).  In such a case, combining the above models suggests the following plant family P  
with mixed uncertainty 
 

( ) ( )( ) [ ] [ ] ( ) ( ) ( ){ }1 : 1 10 0 8 0 9 stable, , . , . , ,
-

P sj t
m m m m

kzP z z k a z e R z
z a

ω= = + ∆ ∈ ∈ ∆ = < ω ∆  

 
Data Format 
 
The data format in the Toolbox is now consistent with linear time-invariant (LTI) models in the Control 
Toolbox. Fixed models are defined as a transfer function (TF), a zero/pole/gain (ZPK), a state-space (SS) 
or a frequency response data (FRD). 
 
Parametric uncertainty can be modeled using LTI arrays.  An LTI array is a collection of TF, ZPK, SS or 
FRD objects.   
 
Because the Toolbox now supports only LTI models for its input and output arguments, it is essential that 
you become familiar with these concepts.  You can type ltimodels at the command line for a quick 
overview, however, you should read Chapters 1-4 in the Control Toolbox manual to become familiar with 
definitions, creation of such models, properties, supported math and logical operations and the concept of 
arrays. 
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3 Feedback Design with QFT 
 
Getting Started 
 
In this chapter we describe all relevant details of a single-loop QFT design.  The design procedure is 
developed in a constructive manner using a simple example.  A QFT design typically involves three basic 
steps:  
 
1. Computation of QFT bounds, 
2. Design of the controller (and possible pre-filter), and 
3. Detailed analysis of the design. 
 
In systems with parametric uncertainty models, you must first generate plant templates prior to step 1.  At 
a fixed frequency, the plant's frequency response set is called a template.  Given the plant templates, QFT 
converts closed-loop magnitude specifications into magnitude and phase constraints on a nominal open-
loop function.  These constraints are called QFT bounds.  A nominal open-loop function is then designed 
to simultaneously satisfy its constraints (expressed as bounds) as well as to achieve nominal closed-loop 
stability.  In a two degree-of-freedom design, a pre-filter will be designed after the loop is closed (i.e., a 
controller has been designed).  Due to engineering approximations involved, an analysis step usually 
follows the design step. 
 
The various steps in a QFT design procedure are shown in the following flow chart.  Note that some steps 
are optional.  For example, you need not define the sampling time if you are performing a continuous-
time design.  You can even jump right into loop design (lpshape), if robustness is not an issue.  The 
functions all have many defaults values; for example, you do not have to pass bounds into the design 
function lpshape. 
 



Feedback Design using QFT  
 

Quantitative Feedback Theory Toolbox User’s Guide  
 

3-2 

 
 

Flow chart showing basic steps in a QFT design 
 
The QFT design procedure for continuous-time systems is now presented.  An exposition for discrete-
time systems then follows, although the two procedures are quite similar.  The discussion for each class of 
systems is divided into several sections based on the conventional order of QFT design execution.  These 
sections discuss topics such as templates, choosing frequencies, choosing the nominal plant, stability 
bounds, performance bounds and design.  Where deemed necessary, each section is further divided into 
two parts: concept and practice.  The concept part covers conceptual issues while the practice part reveals 
how the particular procedure is practiced in the Toolbox. 
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Continuous-Time 
 
The basic steps in a QFT design procedure are presented in this section by first discussing each step 
conceptually and then showing how it is applied in practice.  For this purpose we consider a generic 
robust design problem with simultaneous specifications and parametric plant model.  Suppose the 
uncertain plant P(s) in the system shown in Fig. 9 
 

 
 
 
 
 
 
 
 
 
 

Figure 9: The single-loop feedback system. 
 
is described by the parametric family P  
 

( )
( )( )

[ ] [ ] [ ]: 1 10 1 5 20 30, , , , ,P kP s k a b
s a s b

  = = ∈ ∈ ∈ 
+ +  

. 

 
We assume a sensor with unity gain H(s) = 1.  The feedback problem is to design a controller G(s) such 
that the closed-loop system is robust stable and has at least 50° phase margin for all P(s)∈P .  The 
specification 
 

( ) 1 2 for all [0, )
1

,. , Ps
PG j W P

PG
ω ≤ = ∈ ∈ ∞

+
ω  

 
implies at least 50° lower phase margin and at least 1.66 lower gain margin (not simultaneously).  To 
compute in general these margins, use the following formulae [8] 
 

lower gain margin    =  11 sW −+  
lower phase margin  =  ( )1180 cos 0 5 1 0, . sW −− θ θ = − >o . 

 
The Robust Stability (Margins) Bounds Section includes more details about margins and bounds.  Note 
that different margins bounds can be computed using the sensitivity function problem sisobnds with 
ptype=2 (see [8] and [15] for details).  In addition, there are two robust performance specifications: 
reject plant output disturbance according to 
 

( ) ( ) ( ) ( )
( ) ( )

[ ]
3 2

2
64 748 2400

0 02 , for all 0 10
14 4 169

. , ,
.

Pj j jY j P
D j j

ω + ω + ω +
ω ≤ ∈ ω∈

ω + ω +
 

 
(no specific reason for the transfer function on the right-hand side) and reject plant input disturbance 
according to 
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( ) [ ]0 01 for all 0 50PY j . , P , ,
V

ω ≤ ∈ ω∈ . 

 
We first discuss conceptually the design procedure for robust stability and for robust performance: 
generating templates, computing bounds, loop shaping and analysis.  We follow with a step-by-step 
description of how a QFT design is performed in this example.  Note that in the discussion below, all the 
commands shown in a separate line such as 
 

nompt = 21; 

 
also appear in each example file such as the file qftex1.m. 
 
Templates 
 
One of the most important factors in control design is to use an accurate description for the plant 
dynamics.  Because QFT involves frequency-domain arithmetic, its design procedure requires you to 
define the plant dynamics only in terms of its frequency response.  The term template is used to denote 
the collection of an uncertain plant's frequency responses at a given frequency.  The use of templates frees 
you from the need to have any particular plant model representation.  In QFT, you can use frequency 
response measurements obtained from experiments to describe the dynamics.  However, specific 
uncertainly models are often used, such as parametric and non-parametric models.  The relation between 
such models and their templates is explained below. 
 
Concept 
 
The Toolbox allows mixed uncertainty model for the plant P (parametric and non-parametric), and it 
allows for one additional parametric uncertain transfer function in the loop (G or H).  Because parametric 
uncertainty must be defined in the Toolbox in terms of a finite set of plants (most often obtained by 
forming a grid in the uncertain parameter space), you should always carefully study the resulting plant 
response set.  A generic illustration of “good” and “bad” grid choices are illustrated in Fig. 10.  In 
general, there are no rules for obtaining a reasonable approximation of the boundary from the structure of 
the parametric uncertain plant.  However, for specific cases, such as transfer functions with coefficients 
belonging to known intervals or with coefficients related to the uncertain parameters in a linear or multi-
linear fashion, you can find some useful results in [e.g., 9-11]. 
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Figure 10: “good” and “bad” approximations of a plant template. 

 
The algorithms for computing bounds require input data in terms of frequency responses (templates) 
rather than in terms of numerator/denominator transfer functions.  For simply connected templates, it is 
necessary and sufficient to work only with the boundary of these templates [15]. (This is related to a 
celebrated result in complex variables, the maximum principle.)  The possible difficulty with this 
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approach is that if the plant has a large number of independently uncertain parameters, the template will 
have to be described with hundreds or even thousands of cases.  Even with powerful computers, a 
solution may require an unrealistic long time to derive.  One option is to convert the parametric model (or 
part of it) into a non-parametric model.  This conversion makes possible mathematical solutions to 
complex problems; however, it comes with the price of design conservatism [12].  The idea advocated 
here is to arrive at an approximation where the template's grid points are “close” to each other uniformly.  
A crude discretization can be obtained using a simple grid over each uncertain parameter.  For example, 
 

( )
( )( )

[ ] [ ] [ ]: 1 2 5 8 10 1 3 5 20 25 30, , , , , , , , , ,P kP s k a b
s a s b

  = = = = = 
+ +  

. 

 
Practice 
 
In the first step of a QFT design procedure you define models of open-loop transfer functions (i.e., plant, 
actuators and sensors.  Transfer functions models, fixed or uncertain, are defined as LTI models.  The 
boundary of the corresponding template can be established using results from [9-11] in special cases, or in 
general (as done in this example) using a grid of the parameter space since the number of uncertain 
parameters is small.  Such a procedure will most likely yield interior template points that are not 
necessary for a QFT design and results in an undue computational burden.  A more careful study of the 
template can reduce this burden by eliminating interior points.  Our study showed that 40 plant elements 
are sufficient to describe the template's boundary.  Typically, you will investigate how each uncertain 
parameter affects the shape of the template (holding all others fixed), then include another uncertain 
parameter eventually building up the template boundary. 
 
The following defines a numerator and denominator matrix pair for the plant set (40 elements) that 
corresponds to the template's boundary: 
 

c = 1; k = 10; b = 20; 
for a = linspace(1,5,10), 
 P(1,1,c) = tf(k,[1,a+b,a*b]);  c = c + 1; 
end 
k = 1; b = 30; 
for a = linspace(1,5,10), 
 P(1,1,c) = tf(k,[1,a+b,a*b]);  c = c + 1; 
end 
b = 30; a = 5; 
for k = linspace(1,10,10), 
 P(1,1,c) = tf(k, [1,a+b,a*b]);  c = c + 1; 
end 
b = 20; a = 1; 
for k = linspace(1,10,10), 
 P(1,1,c) = tf(k, [1,a+b,a*b]);  c = c + 1; 
end 
 

 
The above uses the notion of LTI arrays.  Note that the first two indices are used for input/output relations 
while the third is used for arrays (i.e., uncertainty in our context).  Please refer to Chapters 1-4 in the 
Control Toolbox manual for more details. 
 
Next, we must define a nominal plant element that will be used throughout the design.  The choice of 
nominal element is arbitrary and has no effect on the design (except when it is pre-defined as in a non-
parametric model).  Let us arbitrarily choose the following element (an integer index) 
 

nompt = 21; 
 
The next step consists of computing the frequency response set of the uncertain plant in rad/sec.  The 
frequency array must be chosen based on the performance bandwidth and shape of the templates.  Margin 
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bounds should be computed up to the frequency where the shape of the plant template becomes invariant 
to frequency.  Here, at approximately ω = 100 rad/sec, the template's shape becomes fixed, a vertical line.  
Our array includes several frequencies within the performance bandwidth of [0,50] and this particular 
frequency of ω = 100: 
 

w = [0.1,5,10,100]; 
 
If you are uncertain how to select such a frequency array, simply start at a low frequency and advance 
with 2-3 octaves steps within the performance bandwidth and add frequencies above it as needed for 
margin bounds at higher frequencies.  A more detailed discussion of how to select frequencies can be 
found in the next section. 
 
It is very important that you view the plant templates before proceeding with the design.  Viewing 
templates lets you verify that the template boundary approximation is reasonable and that you have 
selected an appropriate frequency array.  To view the templates with a highlighted nominal case invoke 
 

plottmpl(w,P,nompt); 
 
which results in the plot shown in Fig. 11.  The templates are shown based on the second input argument, 
a subset of the full frequency array. 
 
Hint: You can zoom in to any region in the plot if several templates appear clustered together, or right 
mouse button to toggle on/off showing of a particular template.  Please refer to the Reference Chapter for 
details. 
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Figure 11: Plant templates at several frequencies. 

 
We cannot over emphasize the importance of working with “smooth” approximation of templates (those 
whose boundaries are described by a sufficient number of points).  If too few points are used, the 
computed bounds will not be relevant to your original plant description whose boundary is a continuous 
smooth curve.  For example, let us use only two points to describe the template ω = 5 rad/sec. 
 

P1 = P(:,:,[1,21]); 
 
The template (Fig. 12) exhibits almost 30 dB spacing. 
 

plottmpl(w(2),P1); 
 
The fatal implication of such a template on the shape of the bounds is discussed in the Bounds section 
below. 
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Figure 12: A two-element plant template 

 
Choosing Frequencies 
 
In any QFT design, you have to select a frequency array for computing templates and for computing 
bounds (as explained below).  An important question, for which there is no definite global answer, is how 
to select this array from the possible range between zero and infinity.  Fortunately, for engineering design 
we need only a small set that can be found with, at the most, a few iterations.  The basic rule is that for the 
same specification, the bounds will change only with changes in the shape of the template.  Therefore, 
you should look for frequencies where the shape of the template shows significant variations compared to 
those at other frequencies.  How low should you select a frequency?  Well, most plants will exhibit 
dynamics with monotonic behavior in terms of the template shape below a certain frequency, ω1, or in the 
limit 
 

( ) 0
0 1 2, , , ,m

kP s m
s

∞
ω→

→ = …  

 
where m denotes the free integrators. The specifications below ω1 are most often monotonic too, either a 
constant or a linear function of the frequency.  So you can start with ω1 as the lowest frequency in the 
array.  What about the largest frequency in the array?  Parametric uncertain plants will exhibit dynamics 
with monotonic behavior above a certain frequency ω2, or in the limit 
 

( )lim  n
kP s
s
∞

ω→∞
=  

 
where n denotes the excess of plant poles over zeros.  Considering that at high frequencies the only 
specification should be a constant robust stability margin (see next section), the corresponding bounds for 
ω ≥ ω2 will all be the same.  So select ω2 as your largest frequency in the array. 
 
Next you should select a frequency grid between ω1 and ω2.  The idea is to select a grid such that you 
compute bounds that capture variations in shapes and in specifications across that frequency band.  As a 
first cut, start with a grid every one octave or a few octaves (it will include many more frequencies than 
actually needed).  From the resulting bounds, you will obtain an insight into the nature of the bounds and 
their relation to the plant dynamics and specifications.  This insight will be used to eliminate most of the 
redundant frequencies.  By redundant we mean that having performance bounds within a few dB values 
from each other is not needed for design.  Usually, for the same problem, since a performance bound at 
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ωx lies above the bound at ωy (ωy > ωx), we need only a few nicely (frequency) spaced bounds for control 
design.  One exception is the case of plants with resonant dynamics with variations at the natural 
frequencies or damping ratios.  In such cases, the plant template and the corresponding bounds are not 
monotonic around a natural frequency (you may need to select a few frequencies within the band of 
natural frequency uncertainty).  Finally, to get a better feel for selecting the array, go over the example 
files and observe the frequency arrays chosen there relative to the problem data. 
 
In certain problems, analysis of a completed design may indicate that you did not meet some specification 
over a small frequency range.  This can happen only at a range for which you do not have a frequency in 
the array and obviously did not compute a bound there.  This is what we mean by the need for iteration.  
In such a case, select a new frequency within this range, re-compute bounds and then augment the design 
as necessary. 
 
Choosing the Nominal Plant 
 
In order to compute bounds, you will have to designate one plant element from the uncertain set as the 
nominal plant (if there is no uncertainty the fixed plant is the nominal one).  This is required in order to 
perform QFT design with a single nominal loop.  If you described the plant with a non-parametric 
uncertainty model with disk uncertainty, the nominal plant is already determined.  However, when the 
uncertain set corresponds to parametric uncertainty you have a choice.  As long as the set satisfies the 
assumptions on the uncertainty model given in Continuous-Time, you may choose any plant case.  Pick 
the one, which you think is most convenient for design.  Note that the nominal plant index is an integer. 
 
Bounds 
 
Given the plant templates, QFT converts closed-loop magnitude specifications into magnitude and phase 
constraints on a nominal open-loop function.  These constraints are called QFT bounds.  The three most 
common types of bounds are illustrated in Fig. 13 using both complex plane and Nichols chart 
representations. 
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Figure 13: Common types of QFT bounds. 
 
Margin-type problems result in bounds about the critical point (top pair) where the loop response must 
remain outside the bounds (the dark shaded region is the one to avoid).  Sensitivity reduction type 
problems that require increased loop gain, result in bounds about the origin (middle pair) where the loop 
response must remain outside the bounds.  Control effort-type problems which limit the amount of loop 
gain, result in bounds about the origin (bottom pair) where the loop response must remain inside the 
bounds. 
 
Robust Stability (Margins) Bounds 
 
In this section we discuss the consequences of the robust stability results in Robust Stability in terms of 
bounds on the nominal loop.  We have not presented these results yet since familiarity with the theory is 
not required at this point for explaining the QFT design procedure.  Note that the terms stability bounds 
and margin bounds have historically the same meaning in the QFT context. 
 
Concept 
 
The two conditions for robust stability (Robust Stability Criterion 2) are: (1) stability of the nominal 
system (corresponding to the nominal plant) and (2) the Nichols envelope does not intersect the critical 
point q (which is the (-180°,0 dB) point in a Nichols chart or the (-1,0) point in the complex plane)  The 
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second condition is equivalent to placing a magnitude constraint on the complementary sensitivity 
function 
 

( ) for all 0
1

, ,PL j P
L

ω < ∞ ∈ ω ≥
+

. 

 
By assumption, the templates are simply connected and L(s) has a fixed number of unstable poles.  Hence, 
if 1+L(jω) ≠ 0, the Maximum Principle implies that it is necessary and sufficient to check the above 
condition only over the boundary of the template.  It follows that we can replace the above by 
 

( ) for all 0
1

, ,PL j P
L

ω < ∞ ∈∂ ω ≥
+

 

 
where P∂  denotes the boundary of the template.  Our numerical algorithms require the approximation of 
P∂  by a finite number of plant cases (except if it is a disk shape as in non-parametric uncertainty 

model).  The approximation introduces the problem, however, that you can never be sure that the critical 
point q does not intersect P∂  at a point that was removed during the discretization process.  Therefore, 
the above condition is typically replaced by the following margin condition 
 

( ) 1 for all 0
1

, ,Ps
L j W P

L
ω < > ∈∂ ω ≥

+
. 

 
Graphically speaking, for each µ there is a closed curve about the critical point q – the classical closed-
loop constant magnitude circle [13].  The weight sW  is used as a safety factor in this context.  Even if the 
critical point q actually lies on the template's boundary in between adjacent grid points, it will not escape 
(fit in between) a large enough constant magnitude circle.  The smaller sW  is, the larger the spacing that 
can be tolerated (i.e., a more crude approximation). 
 
A similar margin like specification is given by a constraint on the sensitivity function 
 

( )1 1 for all 0
1

, ,Pj W P
L

ω ≤ > ∈∂ ω ≥
+

. 

 
The difference between this condition and the one in terms of complementary sensitivity is that this one 
enforces a smaller loop gain when the plot crosses the -180° line below 0 dB.  In conditionally stable 
systems, the complementary sensitivity condition enforces a larger loop gain when the plot crosses the -
180° line above 0 dB.  The gain and phase margins relative to W can be easily computed as done earlier 
with respect to a complimentary sensitivity weight sW . 
 
Given the plant templates, QFT translates the robust margin (or stability margin only if sW   = ∞ or W = 
∞) constraint into required conditions on the phase and magnitude of the controller.  These constraints are 
referred to as QFT bounds.  For example, the robust margin bound at ω = 1 is shown in Fig. 14. 
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Figure 14: Controller and nominal loop robust margin bounds at ω =1. 

 
To apply Criterion 2, these bounds are subsequently translated into bounds on the nominal loop, L0(jω), 
bounds.  A bound for  is simply equal to the bound for G(jω) shifted vertically by the magnitude of P0(jω) 
and horizontally by the phase of P0(jω), where P0(s)∈P is an arbitrarily selected nominal plant.  In a 
given problem, the same nominal plant must be used throughout the design.  The nominal loop bound for 
the robust margin at ω = 1 is shown above, where the nominal plant is (recall that we earlier selected it to 
be the 21st element) 
 

( )
( )( )

0
0 0 0 0

0 0
1 5 30, , ,

kP s k a b
s a s b

= = = =
+ +

. 

 
A word is in order regarding our graphical notation: a bound plotted with a solid line implies that L0(jω) 
must lie above or on it in order to meet the particular specification.   A bound plotted with a dashed line 
implies that L0(jω) must lie below or on it in order to meet the particular specification.  If the closed-loop 
specification was strict inequality, the loop response cannot lie right on the bound.   
 
If L0(jω) lies right on its margin bound, then we achieve an optimal design in the sense that at that 
frequency 
 

( )
1P s

P

L j W
L∈

ω =
+

max . 

 
A question arises as to what frequencies should be chosen for computing bounds.  In theory, one should 
compute bounds over the entire jω-axis.  In practice, bounds can be computed only up to a finite 
frequency.  This finite frequency is selected based on the high-frequency asymptotic behavior of the 
plant's frequency response.  As ω increases, the change in the shape of the template decreases and 
eventually it approaches a fixed shape.  In a mixed uncertainty plant, if Rmi(ω) = Rm for some ω>ωhf, we 
also have a fixed-shape template at high frequencies.  In our example we have 
 

( )
( )2 , hf

kP j
j

ω ≈ ω ≥ ω
ω

. 

 
For ω≥ωhf, the shape of the templates of this class of plants on a Nichols chart is a vertical line (see Fig. 
11).  This implies that the robust margin bounds for ω≥ωhf  are all the same.  By plotting several 
templates at increasing frequencies, one can find the value of this frequency.  The robust margin bound is 
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shown in Fig. 15 at ωhf = 100.  From this point on, when we mention bounds we imply nominal loop 
bounds. 
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Figure 15: Robust margin bounds including at ωhf = 100. 

 
The Toolbox uses colors to indicate bounds at different frequencies.  The frequency legend can be found 
at the top left corner of the plot screen.  We assign integers to each bound to relate it to a problem type 
ptype (e.g., margin=1 and output disturbance rejection=2; see Table 1:  Single-loop specification types 
and Table 2:  Multiple-loop specification types). 
 
Practical Considerations 
 
There are functions for computing bounds (sisobnds) in single-loop systems and general-purpose bounds 
(genbnds) for cascaded-loop and sequentially designed multiple-loop systems.  One function (there may 
be more than one) that fits the robust margin specification is sisobnds(1,...) with the generic call 
 

bdb = sisobnds(ptype,w,Ws,P,R,nom,C,loc,phs); 
 
The second input argument defines the frequency array where margin bounds are to be computed (must 
be a subset of the frequency array in P if an FRD object).  The specification here is fixed, so 
 

Ws1 = 1.2; 
 
The nominal plant element in P is nompt = 21 was already defined earlier.  The controller to be designed 
is in the forward loop (G(s) in the Toolbox notation) with unity feedback (H(s) = 1).  The robust margin 
bounds can be computed by invoking 
 

bdb1 = sisobnds(1,w,W1,P,R,nompt); 
 
You may be asking yourself why we used only 7 input arguments when above we show 10 input 
arguments.  An important feature of the Toolbox is the use of default values.  In most designs it is not 
necessary to define all input arguments; those not specified are assigned default values.  For example, the 
argument loc is used to indicate whether the controller to be designed is in the forward path (G) or in the 
feedback path (H); the default is loc = 1 indicating forward path.  Using these defaults, the input 
arguments list can be significantly shortened.  As a general rule, an empty matrix implies a default value.  
In our example, because the last four input arguments in invoking sisobnds(1,...) above were not 
defined, the program will automatically use their default values, specifically, C = 1 (H(s) is 1), loc = 1 
(G(s) is the controller to be designed), and phs = [0,-5,-10,…,-360]°.  This default phase array is a 
reasonable choice for most problems. 
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You may recall that in the Templates section we discussed the issue of “smoothness” of templates.  
Bounds for a template whose boundary is defined with too few points will most likely end up non-
connected.  For example, taking the two-point template shown in Fig. 12 and a specification of W1 = 3.5 
results in the non-connected bound shown in Fig. 16. 
 

sisobnds(1,w(2),3.5,P1); 
 

-360 -315 -270 -225 -180 -135 -90 -45 0

-10

-5

0

5

10

15

20

25

30

35

X: Phase (degrees)  Y: Magnitude (dB)

O
pe

n-
Lo

op
 G

ai
n 

(d
B

)

SISOBND1 Bounds

5

 
Figure 16: Non-connected bound of the two-point template. 

 
If you detect non-connected bounds, take a closer look at your plant templates (look for too coarse a grid, 
i.e., large gaps between adjacent template points).  Of course, if the plant is originally non-connected, 
then you have no choice.  You must be extremely careful in evaluating robust stability for such non-
connected plants. 
 
Robust Performance Bounds 
 
This section explains how different performance specifications, for example sensitivity reduction or 
tracking specifications, are converted into bounds on the nominal loop. 
 
Concept 
 
Performance specifications are typically defined within a finite frequency bandwidth that is related to 
closed-loop system bandwidth and spectrum of the disturbances.  Except for rare cases, there is very little 
to be gained by specifying transfer function magnitudes up to frequency of infinity.  The reason is that in 
physical systems open-loop transmission of signals are negligible beyond a certain finite frequency (real-
life transfer functions are strictly proper).  At the high frequency band, the magnitude of the (strictly 
proper) transfer function is very small, say less than 0.0001 (<-80 dB), and hence its contribution to the 
time response of the system is negligible (except at a small neighborhood of t = 0 sec).  For this reason it 
make little sense to define the nominal open-loop dynamics or the uncertainty at high frequencies far 
above the system's bandwidth.  Therefore, in a QFT design, performance is specified only up to a finite 
frequency whose value is always problem dependent. 
 
Practical Considerations  
 
One function that fits the output disturbance rejection transfer function constraint is sisobnds(2,...) 
with the generic call 
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bdb = sisobnds(2,w,Ws2,P,R,nom,C,loc,phs); 
 
The performance weight is defined 
 
 Ws2 = tf(.02*[1,64,748,2400],[1,14.4,169]); 
 
and  the desired bandwidth [0,10],  the bounds are computed from 
 

bdb2 = sisobnds(2,w(1:3),Ws2,P,0,nompt); 
 
One function that fits the input disturbance rejection transfer function constraint is sisobnds(3,...) 
with the generic call 
 

bdb = sisobnds(3,w,Ws3,P,R,nom,C,loc,phs); 
 
The specification is a constant 
 

Ws3 = 0.01; 
 
and the bounds (within the bandwidth of interest) are computed from 
 

bdb3 = sisobnds(3,w(1:3),Ws3,P,0,nompt); 
 
Note that w = 50 is not included.  To see why this frequency is not included, add w = 50 to w (w = 
sort([w,50])), re-compute the template and compute the bounds with wbd3, then plot the bounds. 
 
The nominal loop bounds for the robust output disturbance rejection and the robust input disturbance 
rejection are shown in Fig. 17-18 for several frequencies within the desired performance bandwidth. 
 

-360 -315 -270 -225 -180 -135 -90 -45 0

-30

-20

-10

0

10

20

Open-Loop Phase (deg)

O
pe

n-
Lo

op
 G

ai
n 

(d
B

)

Robust Output Disturbance Rejection Bounds

0.1
5
10

 
Figure 17: Robust output disturbance rejection bounds. 
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Figure 18: Robust input disturbance rejection bounds. 

 
 
Working with Bounds 
 
At this point we have computed bounds for all performance and margin problems.  The next step is to 
combine them into a single variable by invoking 
 

bdb = grpbnds(bdb1,bdb2,bdb3); 
 
This is done solely for convenience, as it is always simpler to work with a single variable.  Let us view 
the bounds (Fig. 19) using 
 

plotbnds(bdb); 
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Figure 19: Superposition of all bounds. 

 
Note the legend shown at the top left corner of your figure (specific frequencies can toggled on/off using 
right mouse button).  Viewing the grouped bounds is often used to compare different specifications and 
quickly identify competing bounds that a nominal loop cannot satisfy simultaneously.  In general, when 
the problem involves more than one set of bounds, one should compute the worst case bound of all sets.  
It is much simpler to work with a single, worst case bound (i.e., the intersection of all bounds) than with a 
collection of many bounds. 
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To compute the worst case bound invoke 
 

ubdb = sectbnds(bdb); 
 
The function sectbnds includes the most general algorithms for computing the intersection of any 
combinations of bounds.  To view the worst case of all bounds, invoke again the same bound plotting 
function 
 

plotbnds(ubdb); 
 
The picture is much clearer now as shown below (Fig. 20).  Take another look at Fig. 19 to visualize how 
Fig. 20 was arrived at. 
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Figure 20: Worst-case (intersection) of all bounds. 

 
We are now ready for loop shaping, that is, design of the controller G. 
 
Design (Loop Shaping) 
 
Having computed stability and performance bounds, the next step in a QFT design involves the design 
(loop shaping) of a nominal loop function that meets its bounds.  The nominal loop is the product of the 
nominal plant and the controller (to be designed).  The nominal loop has to satisfy the worst case of all 
bounds.  The Toolbox includes an interactive design environment for loop shaping.  A detailed 
description of the design environment can be found in The Interactive Design Environment (IDE).  
Nominal loop shaping is done using lpshape with the generic call 
 

lpshape(wl,ubdb,P0,C0,phs); 
 
The first input argument defines the frequency array for loop shaping.  It should be the same one you 
would use in Bode plotting, that is, cover 3-5 decades in most cases.  You can add or subtract decades to 
the frequency array inside the design environment, or even let the function select one for you by entering 
an empty matrix [].  So let us start with 
 

wl = logspace(-2,3,100); 
 
Next, define the nominal plant.  Control design is performed using the nominal loop is L0(s) = P0(s)G(s) 
(H = 1 here), where P0(s) must be the same nominal plant used during bound computations, hence 
 
 L0=P(1,1,nompt); 
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 L0.ioDelay = 0; % no delay 

 
If H(s) is also uncertain then L0(s) = P0(s)G(s)H0(s).  Often, you know a priori of certain poles and zeros 
that the controller must have, e.g., an integrator, or have designed a controller using other methods.  This 
is the purpose for the initial controller input argument C0. 
 
All example M-files (qftex1-qftex15) include pre-designed controllers.  In this example we include two 
pre-designed controllers, one proper and the other strictly proper.  When you run this example (qftex1.m) 
you will prompted to select one at the design step.  However, to accomplish our objective of teaching you 
how to loop shape, we use no initial controller that is 
 

C0 = tf(1,1); 
 
Hint: You may find that in certain cases, e.g., plants with unstable and non-minimum phase zeros, it is 
difficult to loop shape a stabilizing controller manually.  A recommended approach in such cases is to a 
priori design a stabilizing control for the nominal plant using one of many available methods (e.g., see 
Control System, Robust Control, and µ-Analysis and Synthesis Toolboxes).  Use this controller as your 
initial controller.  You can import a linear time-invariant controller into lpshape using the function 
putqft. 
 
You are now ready to enter the loop-shaping environment 
 

lpshape(wl,ubdb,L0,C0); 
 
where we have used the default setting phs = [0,-5,-10,…,-360] degrees. 
 
Let us now learn how one typically performs loop shaping.  This aspect of the QFT design is usually the 
most difficult for novice users.  The more experience you gain, the easier it gets.  Invoking the above 
function results in the plot shown in Fig. 21. 
 
Generally speaking, loop shaping involves adding poles and zeros until the nominal loop lies near its 
bounds and results in nominal closed-loop stability.  The following is one possible loop shaping sequence.  
There are many other sequences, equivalently acceptable, that are based on the particular experience of 
the user.  This is really the beauty of QFT; it provides the user with the power to consider different 
controller complexity and values and weight possible trade-offs almost instantly.  An excellent exposition 
of loop shaping can be found in [3] (as well as in [30]-[32]). 
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Figure 21: Initial nominal open-loop response and its bounds. 

 
The nominal loop to be designed is L0(s) = P0(s)G(s) where P0(s) is the nominal plant.  Within the design 
environment, although you loop shape the plot of L0(s) during design you are in essence loop shaping the 
controller G(s).  Therefore, in any design step, the zeros and the poles you are working with are your 
controller elements G(s). 
 
Let us first iterate on the value of the controller's gain to bring it closer to the performance bound at ω = 
0.1.  This and other loop shaping options can be done by using either graphics protocol (via mouse) or 
text protocol (via keyboard).  For more details, please refer to the Interactive Design Environment section 
in Chapter 6.  The descriptions below show commands in boldface such as Select Elements to Add that 
imply the use user interface controls. 
 
Using graphics protocol:  Selecting the Gain element in the Select Elements to Add pull-down menu , 
select a point on the nominal loop by pressing and holding down the mouse button.  A special marker 
appears when the mouse lies on top of any part of the loop and you will be able to drag the selected 
frequency.  The Toolbox will compute the gain multiplication or division necessary to move the loop to 
its new location.  The gain can be modified further by re-selecting the marker on the loop and dragging 
the loop up or down to a new location. 
 
Using text protocol: Select the Gain element in Select Elements to Add pull-down menu and enter 
numerical value(s) in the box(s) below.  Pressing Add Using Input Fields displays both the current 
response and the updated response.  Pressing Apply accepts this new element.  For the Gain, enter the 
new value of 379 and press <enter>.  Press Apply to accept the new value (Fig. 22). 
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Figure 22: Open-loop plot with a controller gain of 379. 

 
Next, you can observe that a phase lead is necessary because the nominal loop lies inside the margin 
bounds at higher frequencies.  So let us add a real zero. 
 
Using graphics protocol: Select real zero in Select Elements to Add pull-down menu, select the point on 
the response plot where the frequency is ω = 61 (the program shows the corresponding nominal loop 
frequency in the upper-right hand corner of the screen).  In our case, it is approximately where the loop 
crosses the -20 dB horizontal line.  Once you select that point by pressing the left mouse button a (red) 
marker will show up at that point.  Now, drag the selected point to the new location of (-100°,-20 dB) 
(approximately 50° to the right).  We are adding more phase lead than may seem necessary because we 
anticipate adding more poles to make the controller at least proper.  Again, after the zero is implemented 
graphically, you can modify the response by re-selecting and dragging the displayed (red) marker.  
Finally, you should end up with a zero value of z = 42 and the present loop as shown below.  If this is not 
your value, perform this using the above text protocol.  The result is shown in Fig. 23. 
 
If you wish to extend the frequency response plot beyond the present frequency vector, select 
Tools|Frequency... and then enter values for lower and upper limits of frequency and the number of 
points.  Take some time now to try this procedure. 
 
Using text protocol: select Real Zero in Select Elements to Add, enter 42 at the zero box below, press 
Add Using Input Fields then press Apply. 
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Figure 23: Open-loop plot with an added controller zero at z = 42. 

 
The final step involves shaping the high-frequency response of the nominal loop (and of the controller) 
with the goal of dropping its magnitude as fast as possible to satisfy a roll-off constraint.  For this step, 
you must first decide on the complexity of the controller based on physical constraints, e.g., speed of DSP 
board.  Suppose you decided on a relative degree of 1 (i.e., degree of denominator minus degree of 
numerator).  A second-order pole best suits this objective. 
 
Using graphics protocol: Select Complex Pole in the Select Elements to Add pull-down menu, select a 
point on the nominal loop to be shifted to the left with the second-order term.  The program will compute 
the required damping ratio and natural frequency.  Note that when using a second-order term it may not 
always be possible to achieve both magnitude and phase changes as desired (only stable terms can be 
generated in a graphics protocol).  Again, after the second-order term is implemented graphically, you 
can modify both the natural frequency and the damping ratio by re-selecting the (red) marker and 
dragging it to a new location. 
 
Using text protocol: Select Complex Pole in the Select Elements to Add pull-down menu, enter a 
damping ratio of 0.5 at the zeta box and a natural frequency of 250 at the wn box below, press Add Using 
Input Fields and finally press Apply.  A damping ratio of 0.5 is an optimal choice between minimal 
oscillations and maximal magnitude/phase slope.  The result is shown in Fig. 24. 
 



Feedback Design using QFT  
 

Quantitative Feedback Theory Toolbox User’s Guide  
 

3-21 

 
Figure 24: The plot with the new second order (wn=250 and zeta=0.5). 

 
Now, use the sliders to fine-tune the value of the natural frequency so that the nominal loop passes just 
below the robust margin’s high frequency bound (at ω = 100).  This guarantees that it will not violate the 
margin bounds higher frequencies due to the invariant shape of the template.  The final result is shown in 
Fig. 25 with wn = 247 (use the edit option to enter this value if necessary). 
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Figure 25: Final design with a tuned second order (wn=247). 

 
The final interactively designed controller is given by 
 

( )
( )

2
2

42

247247

379 1

1

s

s s
G s

+
=

+ +
. 

 
We recommend that you verify that the bottom part of the high frequency margin bound is not violated by 
the nominal loop.  This is important because, in that region on a Nichols chart, relatively small open-loop 
dB differences result in rather large closed-loop dB variations.  To check, zoom in to that region by 
selecting one corner and dragging the “rubber-band box” to define new axis limits.  The result of this 
zoom is shown in Fig. 26. 
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Figure 26: Zoomed-in view of the final design. 

 
If you are not satisfied with the design, you can continue with loop shaping.  You will discover that by 
adding more terms to the controller, you can place the nominal loop closer and closer to its bounds.  
However, this comes at a cost of increased complexity of the controller.  In general, there are infinitely 
many nominal loops that can meet the bounds (if at least one solution exists).  They differ in their 
complexity and bandwidth (the example file includes two such solutions).  In addition to the above terms 
used during loop shaping, the program includes lead/lag, integrators, proper 2nd order (denoted in QFT 
Toolbox as super 2nd or 2/2), notch and complex lead terms (see Design Elements section in Chapter 6 
for more details).  The example file contains another controller that solves the feedback problem 
 

( )
379 1

42

1
165

s

G s s

 + 
 =

+
. 

 
This controller is only proper and is far less attractive in practice when compared to the previous 
controller in terms of sensor noise amplification and robustness against high frequency unmodeled 
dynamics.  The measure of optimality in QFT is to design a controller that meets its bounds and has the 
minimal high frequency gain for the given controller's complexity. 
 

In the present design, robust stability (see Robust Stability) is achieved since the nominal loop does not 
violate the robust margin bounds and does not cross the ray ( ){ }:  = 180 0 dB, ,r r= φ φ − >0R o .  
Therefore, we have completed the design.  
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Hint:  If the designed controller appears to have too high an order (i.e., you were a bit too quick with the 
mouse...), you can perform on-line model order reduction.  The reduction algorithms were specialized to 
exploit our specific knowledge of the controller's poles and zeros.  A detailed description of the available 
model reduction options can be found in The Interactive Design Environment (IDE). 
 
The IDE functions do not have any output arguments.  Within the IDE functions, the design can be stored 
in a specialized MAT-file or even placed in the workspace.  In the MATLAB command line you can 
retrieve any design using the function getqft (see Reference Chapter for details). 
 
Analysis 
 
When you complete a QFT design, as we have just done, you should analyze the closed-loop response at 
frequencies other than those used for computing bounds.  Typically, this is done at the same frequency 
array used in loop shaping by invoking the function 
 

chksiso(ptype,w,wbd,Ws,P,R,G,H,F) 
 
We recommend that you use a denser plant template than the one used in computing bounds.  So let us 
increase the number of plant cases along the boundary from 40 to 100: 
 

c = 1; k = 10; b = 20; 

for a = linspace(1,5,25), 

 P(1,1,c) = tf(k,[1,a+b,a*b]);  c = c + 1; 

end 

k = 1; b = 30; 

for a = linspace(1,5,25), 

 P(1,1,c) = tf(k,[1,a+b,a*b]);  c = c + 1; 

end 

b = 30; a = 5; 

for k = linspace(1,10,25), 

 P(1,1,c) = tf(k,[1,a+b,a*b]);  c = c + 1; 

end 

b = 20; a = 1; 

for k = linspace(1,10,25), 

 P(1,1,c) = tf(k,[1,a+b,a*b]);  c = c + 1; 

end 
 
In certain cases, e.g., plants with resonances, you may also want to increase the number of frequencies in 
wl.  To analyze closed-loop margin (ptype = 1), invoke the above function that results in a plot of the 
worst (over the uncertainty) closed-loop response magnitude versus the specification.  In particular, 
invoking 
 

chksiso(1,wl,W1,P,R,G); 
 
results in the plot shown in Fig. 27. 
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Figure 27: Analysis of robust margin problem. 

 
Hint: You can easily zoom in to any frequency bands where the closed-loop transfer function appears to 
be very close to its specification.   
 
To analyze the output disturbance rejection problem, invoke the following 
 

ind=find(wl<=10); 
chksiso(2,wl(ind),W2,P,R,G); 

 
which results in the plot shown in Fig. 28. 
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Figure 28: Analysis of robust output disturbance problem. 

 
To analyze the input disturbance rejection problem, using ptype = 3 invoke the following 
 

chksiso(3,wl(ind),W3,P,R,G); 
 
which results in the plot shown in Fig. 29. 
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Figure 29: Analysis of robust input disturbance problem. 

 
If the design fails at some frequency (or over a frequency band), you may decide to compute the 
corresponding bound for the specific problem at that frequency, then re-design the nominal loop.  
Alternatively, you can skip the computation of a new bound and directly go into loop shaping.  For 
engineering purpose, adding some gain and/or phase to the loop at that frequency may be sufficient. 
 
Design (Pre-Filter Shaping) 
 
If the feedback system involves tracking of reference signals, then clearly your best choice would be to 
use a pre-filter F(s) in addition to the controller G(s) embedded within the closed-loop system.  Examples 
Example 2: 2-DOF Design and Example 13: 2 DOF Design (Discrete-Time) include such a design 
(qftex2.m and qftex13.m). 
 
The Toolbox includes an interactive design environment for pre-filter shaping.  A detailed description of 
the interactive design environment can be found in Chapter 6. 
 
Pre-filter shaping is done using pfshape with the generic call 
 

pfshape(ptype,w,Ws,P,R,G,H,F0) 
 
• The input arguments are the same as used in computing bounds.  The argument ptype defines the 

particular closed-loop transfer function of interest, e.g., sensitivity or complementary sensitivity.  The 
input arguments are: 

• w is the frequency array where margin bounds are to be computed 
• Ws is an upper and lower magnitude bound on the closed-loop transfer function 
• P is the frequency response set of the plant 
• R is the disk radius in a multiplicative uncertain plant 
• G and H are the frequency responses of the other functions in the loop 
• F0 is an initial pre-filter.  
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To illustrate pre-filter design, suppose that for the problem considered in the last section there is an 
additional tracking specification of the form 
  

1.1, for all
1

PPGF P
PG

⋅ ≤ ∈
+

. 

 
This is a two-degree-of -freedom design.  In such cases which involve pre-filters, the first step would be 
to close the loop by designing the controller G(s) and assuming F(s) = 1.  Once G(s) is give, we can focus 
on design of F(s) to meet tracking specifications.  For our example, the pre-filter design environment is 
initiated by invoking 
 

pfshape(1,wl,1.1,P,0,G) 
 
Invoking the above function results in the plot shown in Fig. 30. 
 

 
Figure 30: Closed-loop tracking response with F(s)=1. 

 
Shown in Fig. 30 are the worst-case closed-loop response over plant uncertainty and the specification 
(dashed line).  The pre-filter design environment uses the same commands as in loop shaping, so the 
earlier description on loop shaping holds here too.  Design of the pre-filter is usually a trivial task.  In this 
example, a pole at 140 will do the job: select Real Pole from the Select Elements to Add pull-down 
menu, enter 140, press Add Using Input Fields, and press Apply.  It would be simpler to add the pole 
directly using the graphics protocol.  This addition results in Fig. 31. 
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Figure 31: Closed-loop tracking response with a 1st order pre-filter. 
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Discrete-Time 
 
The discussion on the use of the Toolbox for continuous-time systems extends naturally to discrete-time 
systems. (The Laplace variable s is replaced with sj tz e ω= , st  = sampling time, and the frequency band 

of interest is limited to 0,
st

π ω∈   rad/sec).  With the exception of the robust stability bounds and the 

loop shaping procedure, all other topics such as templates, bounds and analysis are only summarized here.  
You should first read the previous section on continuous-time systems before you proceed with this 
section. 
 
The general block diagram is the same one used in continuous-time system and shown again in Fig. 32 
below. 
 

 
 
 
 
 
 
 
 
 

Figure 32: The single-loop feedback system. 
 
Templates 
 
The Toolbox allows mixed uncertainty model for the plant P (parametric and non-parametric), and it 
allows for one additional parametric uncertain transfer function in the loop (G or H).  The problem of 
accurately defining the plant templates is even more difficult in sampled-data systems where the 
continuous-time plant is parametric uncertain. 
 
Robust Stability (Margins) Bounds 
 
Bounds are computed based on the condition for robust stability in the discrete-time case (see Robust 
Stability) that for the system shown in Fig. 32 is given by 
 

( ) for all 0
1

P s
s

jωtz e
PGH πz , P ,

PGH t
, , ω=

 
< ∞ ∈∂ ∈ +  

 

 
where P∂ denotes the exterior boundary of the template of the discrete-time family P .  The robust 
margin condition is given by 
 

( ) 1 for all 0
1

P s
s

jωtz e
PGH πz , P ,

PGH t
, , ω=

 
< µ > ∈∂ ∈ +  

. 

 
Because a discrete-time QFT design is similar to that in continuous-time, please refer to that section for a 
detailed discussion on the various aspects of the procedure. 
 
Bounds are computed with the functions sisobnds and genbnds as done in continuous-time systems. 
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Robust Performance Bounds 
 
The procedure for computing discrete-time bounds for robust performance problems is the same as the 
one explained previously for continuous-time systems. 
 
Bounds are computed with the functions sisobnds and genbnds as done in continuous-time systems. 
 
Design (Loop Shaping) 
 
Once discrete-time bounds are computed, you are ready for next design of loop shaping a nominal loop 
function to satisfy its bounds.  The nominal loop would have to satisfy the worst case of all bounds.  This 
Toolbox includes  The Interactive Design Environment (IDE) for loop shaping. 
 
Nominal loop shaping is done using lpshape with the generic call (LTI models must be discrete-time) 
 

lpshape(wl,ubdb,L0,C0,phs); 
 
This function allows control design directly in the z-domain. That is, you can work with the equivalent of 
real poles and zeros, integrators and lead/lag terms in the variable z.  It is well known that z-domain loop 
shaping is an unfamiliar topic for most engineers.  However, in applications where the system bandwidth 
is relatively close to half the sampling frequency, there is no substitution to direct z-domain design due to 
the distortion introduced in the s → z and w → z mappings.   
 
Design (Pre-Filter Shaping) 
 
If the feedback system involves tracking signals, then clearly your best choice would be to use a pre-filter 
F(z) in addition to the controller G(z) embedded within the closed-loop system.  Example 12 in Chapter 5 
includes such a design. 
 
The Toolbox includes The Interactive Design Environment (IDE) for pre-filter shaping. 
 
Pre-filter shaping is done using pfshape with the generic call (LTI models must be discrete-time) 
 

pfshape(ptype,w,Ws,P,R,G,H,F0) 
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4 Using the Nichols Chart 
 
The Nichols chart 
 
The Nichols chart is the domain of choice for QFT design.  If you are used to designing with Bode plots, 
this chapter is aimed at demonstrating that Bode and Nichols plot designs are similar.  Your insight and 
experience with classical loop shaping on Bode plots can be easily ported to the Nichols chart.  It should 
be emphasized here that in contrast to the original intent of Nichols plots, in the QFT Toolbox we do not 
use closed-loop grids by default (they can be turned on however).  The reason is that the Toolbox 
mathematically translates closed-loop specifications into open-loop bounds. 
 
The Nichols chart represents complex numbers in terms of their magnitudes and phases. Each complex 
number, s, has a Cartesian representation (x,y) and a polar representation (r,φ).  The coordinates of the 
Nichols chart are (φ, 20log(r)).  The horizontal coordinate, φ, typically ranges between -360° and 0°, 
while the vertical coordinate, 20log(r), ranges theoretically from -∞ dB to +∞ dB.  The Nichols chart used 
in practice is naturally limited to a finite range of magnitudes. 
 
The phase of a Nyquist plot usually extends outside the (-360°,0°] range.  If one wishes to retain 
continuity of the Nichols plot, one has to extend it periodically in the phase coordinate.  A Nyquist curve 
winding k times around the origin would be transformed this way into a continuous (but not closed!) 
curve drawn along a scroll of at least k Nichols sheets. This curve will be called the multiple-sheeted 
Nichols plot.  Analysis and design of feedback systems can be equally performed using a single-sheeted 
plot or a multiple-sheeted plot (for connected templates only). The decision to use one or the other is a 
matter of convenience only.  The Toolbox offers one, multiples and fractions of the Nichols chart.  A 
typical single-sheeted Nichols chart, shown in Fig. 33 (with closed-loop grid), is equally applicable to 
continuous-time and to discrete-time systems.  The Control System Toolbox function ngrid draws 
Nichols chart closed-loop grids. 
 
The horizontal and vertical coordinates are used for the phase (degrees) and the magnitude (dB), of the 
open-loop function L(s).  The phase (degrees) and magnitude (dB) of the closed-loop transfer function, 
L(s)/(1+L(s)), are the curves shown inside the chart.  As mentioned earlier, in this Toolbox we only work 
with the open-loop coordinates while the closed-loop coordinates are replaced by the use of bounds. 
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Figure 33: The Nichols chart. 

 
Continuous-Time 
 
Stability 
 
Consider the linear, time-invariant, continuous-time, single-loop feedback system shown in Fig. 34. 
 

 
 
 
 
 
 
 
 
 
 

Figure 34: The single-loop feedback system. 
 
The loop transmission (open-loop function), L(s) = P(s)G(s)H(s), is assumed to be a product of a rational 
(proper or strictly proper) function and a pure time delay.  We assume that no unstable pole/zero 
cancellations take place in L(s).  A standard Nyquist contour, with right jω-axis indentations as necessary 
to account for imaginary axis poles of L(s) is shown in Fig. 35. 
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Figure 35: The continuous-time Nyquist contour. 
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Definition.  The Nyquist plot of L(s) is said to have a crossing if it intersects the negative part of the real 
axis, Re[L(s)]<-1.  The sign of the crossing is either positive or negative, depending on the direction of 
the plot at the crossing point.  Crossings and corresponding signs in both the complex plane and the 
Nichols chart are illustrated in Fig. 36. 
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Figure 36: The notion of crossing. 
 
The following is the Nichols chart stability criterion used in QFT fixed plants [4].    Let n denote the total 
number (counting multiplicity) of the unstable poles of L(s) inside the Nyquist contour. 
 
Criterion 1:  The feedback system in Fig. 34 is stable if: 
• The single-sheeted Nichols plot of L(s) does not intersect the point q:=(-180°, 0dB), and the net sum of 

its crossings of the ray R0:={(φ,r): φ=-180°, r>0dB} is equal to n; or 
• The multiple-sheeted Nichols plot of L(s) does not intersect any of the points (2k+1)q, ,,,, K210=k  and 

the net sum of its crossings of the rays R0 + 2kq is equal to n. 
 
The number of crossings is equivalent to the number of encirclements of the critical point (-1,0) by the 
Nyquist plot of L(s).  Therefore, the key relation is Z = N+n, where Z denotes total number of closed-loop 
poles inside the Nyquist contour, N denotes number of crossings and n denotes total number of the poles 
of L(s) inside the Nyquist contour.  Two examples of Nichols plots and stability analysis are presented 
below [4]. 
 
Example 1: Consider a unity feedback system that has the following stable open-loop function 
 

( )
( )( )( )

0
1 5 10

,
kL s k

s s s
= >

+ + +
. 

 
The Nichols plot is shown in Fig. 37 on a multiple-sheeted chart ( 3000k = ).  Two positive crossings of 
the two rays, },{ dB,):(: 0180 >−=φφ= rr o

0R  and },{ dB,):(: 01801 >=φφ= rr oR , can be observed. 
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Figure 37: Nichols plot of Example 1 on a multiple-sheeted chart. 

 
From Criterion 1, since the system is open-loop stable we must reduce the gain (i.e., shift the plot down 
vertically) to eliminate any crossings.  If we reduce the gain by a factor of 3 (approximately 9.5 dB), the 
plot will be just below the rays R0 and R1.  Hence, we conclude that the closed-loop system is stable if 
k<1000.  Note that for strictly proper functions, L(s) = 0 at the semi-infinite circle portion of the Nyquist 
contour.  On the Nichols chart, this is represented by a horizontal segment at -∞ dB starting at L(j∞) and 
ending at L(-j∞).  The width of the segment is equal to (no. of poles - no. of zeros) x 360°. 
 
The same analysis can be done using the single-sheeted Nichols chart as shown in Fig. 38.  Any segment 
of the plot can be shifted horizontally by ±j360°, j=0,±1,±2,.... . 
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Figure 38: Nichols plot of Example 1 on a single-sheeted chart. 

 
In control design, it is customary to plot only half Nyquist plots (i.e., the Bode plot), taking advantage of 
conjugancy of transfer functions with real coefficients.  Conjugancy can also be exploited with Nichols 
plots.  In this example, the half-plot shown in Fig. 39 indicates a single positive crossing or equivalently a 
total of two positive crossings for the full plot. 
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Figure 39: Half Nichols plot of Example 1. 

 
Special care must be taken when the loop has integrators, as in the following example. 
 
Example 2: Consider a unity feedback system that has the following open-loop function 
 

( )
( )( )

0
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,
kL s k

s s s
= >

+ +
. 

 
The single-sheeted Nichols plot is shown in Fig. 40 with k = 1. 
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Figure 40: Nichols plot of Example 2 on a single-sheeted chart. 

 
Note that unlike Nyquist plots, Nichols plots may not be closed.  In this example, if the gain is increased, 
the plot will eventually cross the ray },{ dB,):(: 0180 >−=φφ= rr o

0R  twice.  This happens when k = 100 
(40 dB).  Hence, the system is closed-loop stable if k<100.  For k>100, there are two positive crossings or 
two unstable closed-loop poles.  You can also observe a segment of the plot at +∞ dB.  The Nyquist plot 
has a semi-infinite circle for each integrator (or other jω-axis poles) in L(s) which translates into segments 
at +∞ dB on a Nichols chart.  Specifically, a Nichols plot will have a 180° horizontal segment at +∞ dB 
for each jω-axis pole in L(s).  For practical reasons such segments are rarely shown as part of the plot, but 
must be considered in stability analysis.  There is a rather simple rule for drawing (or visualizing) such 
segments on a Nichols chart: first draw the basic (Bode) plot from ω→0+ up to very large frequency, then 
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connect to it a 180o-wide horizontal segment (for each integrator) such that left edge of the segment ends 
at the point L(j0+).  In this example we have a single integrator implying a segment 180°-wide which 
should be connected to L(jω) at -90° with a very large magnitude (approaching +∞ dB) at ω→0+.  This 
segment should then start at +90° and end at -90°.  However, in both full and half plots the phase axis 
does not include positive phases.  Hence, we start the segment at -270° and continue toward -360°, then 
jump to 0° and continue to -90°, totaling 180° (one integrator).  Note that you need not physically draw 
these segments; it suffices to attach imaginary segments to the actual plot when counting crossings for 
stability analysis (Fig. 41). 
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Figure 41: Half Nichols plot of Example 2. 

 
In certain cases with poles on the jω-axis, the plot may appear to be tangential to the ray 

},{ dB,):(: 0180 >−=φφ= rr o
0R in which case it is not clear how to count crossings.  For example, 

consider the open-loop function 
 

( )
( )2 0

1
,

kL s k
s s

= >
+

. 

 
As ω→0, the phase of L(jω) approaches -180° and the magnitude approaches ∞.  To correctly count any 
crossings, you need to realize that in fact L(jω) does not lie on the ray R0 at infinity, it is only tangential 
to it.  This can be observed by taking the partial fraction in the limit as ω→0 
 

( ) 2 201
k k k k kL j j j

j ω→
ω = − + + →− +

ω ω+ ωω ω
. 

 
Although the real part is at -∞, there is always a non-zero imaginary part as well (of course it is much 
smaller in magnitude compared to the real part).   Hence, the plot does not lie on the ray R0 as ω→0 and 
it is possible to count crossing.  Another way to interpret the type of crossing is by figuring the phase at 
ω→0+. 
 
Robust Stability 
 
In many physical situations, the actual plant dynamics are known to belong to a set (family) of plantsP .  
The idea of robust stability in QFT amounts to checking stability using one nominal loop 

(s)(s)(s)(s) 0000 HGPL = , where P0(s)∈ P  is termed the nominal plant, and then demonstrating stability 
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of the whole set P by some argument involving the nature of P .  This property is commonly referred to 
as robust stability. 
 
At each point, jω, on the Nyquist contour, the responses of L(jω) fill in a neighborhood of the nominal 
response L0(jω).  The collection of all the responses of the plant P(jω) is called a template.  Assuming the 
controller to be fixed, the shape of the collection of all the responses of L(jω) is the same as that of the 
template P(jω).  The shape of the template can range from a non-connected region to a convex region (see 
Fig. 42). 
 

 

 connected 
template convex simply connected 

template disk non-connected 
template template template  

Figure 42: Various templates. 
 
For design purposes, one typically enlarges the template into a simply connected region (roughly 
speaking, it is made of a single “piece” and has no holes).  Another possibility is to define the template as 
the convex hull of the region (in a convex set any two points in the set can be connected via a line that lies 
entirely in the set).  The most conservative approach would be to turn the region into a disk (non-
parametric model). 
 
As we traverse the Nyquist contour, the union of these templates is called the Nichols envelope.  Note that 
templates unify the way QFT treats uncertainty since parametric, non-parametric or mixed uncertainty 
plant models all have a similar frequency response representation.  If your template has holes, the 
Toolbox algorithms will automatically “fill in” and assume that no holes exist.   
 
Naturally, you may ask yourself what models of uncertain plants generate the templates shown in Fig. 42.  
Because the focus in QFT is on engineering design, we will not attempt here to provide a complete 
answer that covers all possible pathological cases, nor is it claimed that QFT is applicable to all classes of 
systems.  However, if the plant you are working with represents a realistic system then it most likely fits 
the following mold:  (1) the plant is strictly proper with the possibility of a pure time delay, and (2) the 
plant model is parametric and/or non-parametric uncertainty where its numerator and denominator sets or 
pole and zero sets depend continuously on the uncertain parameters set.  If your plant is non-rational or 
has some other exotic structure, QFT may still be applicable, but you must proceed with care.  
Essentially, what we want to avoid is a template composed of disjointed parts (i.e., non-connected), 
though with proper care it may be possible to design for robustness with QFT even with non-connected 
templates. 
 
The following is the Nichols chart robust stability criterion [4-6, 23] used in QFT.  The loop transfer 
function L is assumed to belong to a set L, which has the uncertainty form described in Chapter 2.  In 
addition to the trivial assumption of no unstable (including jω-axis) pole/zero cancellation in any L(s) in 
the set, the criterion requires either one of the following groups of conditions.  The first group is: (1) L(s) 
is strictly proper, (2) the uncertain parameters belong to a compact and simple connected set, (3) the 
coefficients of the numerator and denominator of L(s) depend continuously on the uncertain parameters, 
and (4) the coefficients of the highest degree s terms in the numerator and denominator of L(s) cannot 
vanish.  The second group is: (1) at each fixed frequency, the responses of all L(jω) form a convex set in 
the complex plane, and (2) the number of unstable poles in L(s) is fixed. 
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Criterion 2: Consider the feedback system shown in Fig. 34.  Assume that the uncertain set L  satisfies 
one of the above groups of conditions.  Let L0(s) ∈ L  denote the nominal plant.  The feedback system is 
robust stable if: 
• The nominal closed-loop system corresponding to L0(s) is stable and the single-sheeted Nichols 

envelope does not intersect the point q; or 
• The nominal closed-loop system corresponding to L0(s) is stable and the multiple-sheeted Nichols 

envelope does not intersect any of the points (2k+1)q,  k=0, 1, 2, .... 
 
The condition that the single-sheeted Nichols envelope does not intersect the point q is the same as 
requiring that 1+L(jω)≠0 for all L(s) ∈ L  and for all frequencies on the jω-axis. 
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Discrete-Time 
 
Stability 
 
Consider the linear, time-invariant, discrete-time, single-loop feedback system shown in Fig. 34.  The 
loop transmission is denoted by L(z) = P(z)G(z)H(z), and 1+L(z) is assumed to be proper.  In addition, we 
assume that no unstable pole/zero cancellations take place in L(z).  Let  0,,s

s
j t

tz e ω π = ω∈   ( st  is the 
sampling time).  The standard Nyquist contour, with unit circle indentations as necessary to account for 
poles of L(z) on the unit circle, is shown in Fig. 43.  Let n denote the total number (counting multiplicity) 
of the poles of L(z) outside the unit circle. 

 
 
 
 
 
 
 
 
 

Figure 43: The discrete-time Nyquist contour. 
 
Definition.  The Nyquist plot of L(z) is said to have a crossing if it intersects the negative real axis, 
ReL(z)<-1.  The sign of the crossing is either positive or negative, depending on the plot’s direction at the 
crossing point.  Here, crossings and signs in both complex plane and Nichols chart have the same 
meaning as in the continuous-time case. 
 
Criterion 3:  The feedback system in Fig. 34 is stable if [4,7]. 
• The one-sheeted Nichols plot of L(z) does not intersect the point q:=(-180°, 0dB), and the net sum of its 

crossings of the ray R0:={(φ,r): φ=-180°, r>0dB} is equal to n; or 
• The multiple-sheeted Nichols plot of L(z) does not intersect any of the points (2k+1)q, ,,,, K210=k  and 

the net sum of its crossings of the rays R0 + 2kq is equal to n. 
 
Two examples of nominal Nichols stability analysis are presented below. 
 
Example 3: Consider a unity feedback system that has the following open-loop function 
 

( ) ( )
( )( )

0 9
0

1 0 7
.

,
.

k z
L z k

z z
+

= >
− −

. 

 
The sampling time is st  = 0.1 seconds.  The single-sheeted Nichols plot is shown in Fig. 44 for k = 0.1.  
For this gain there are no crossings. 
 

-1
x

1

unit circle

x
-1

x
1

unit circle
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Figure 44: Nichols plot of Example 3 on a single-sheeted chart. 

 
If the gain is kept below k<0.33 (an increase of approximately 10.4 dB), the closed-loop remains stable.  
Two positive crossings will occur if 0.33≤k<34.09 indicating instability.  A single positive crossing 
occurs for k≥34.09 (an increase of approximately 50.6 dB), also indicating instability.  Note that the 
Nyquist plot will have a semi-infinite circle for each pole of in L(z) lying on the unit circle.  For a detailed 
discussion on such segments, see Example 2 above. 
 
Example 4: Consider a unity non-minimum phase feedback system that has the following open-loop 
function 
 

( ) ( )( )
( )( )( )

2 0 9
0

1 0 7 0 3
.

,
. .

k z z
L z k

z z z
+ +

= >
− − −

. 

 
The sampling time is st  = 0.1 seconds.  The multiple-sheeted Nichols plot is shown in Fig. 45 for k = 
0.01, where no crossings can be observed. 
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Figure 45: Nichols plot of Example 4 on a multiple-sheeted chart. 

 
If the gain is kept below k<0.027 (an increase of approximately 9 dB) the closed-loop system remains 
stable.  Two positive crossings will occur if k≥0.027 indicating two unstable closed-loop poles.   
 



Using the Nichols Chart 

QFT Frequency Domain Control Design Toolbox User’s Guide  
 

4-11 

Robust Stability 
 
The uncertain system for which this Toolbox is applicable includes the same class described in the 
previous section on continuous-time systems.  The concept of templates can be extended to 

)()()()( zHzGzPzL =  where P(z)∈ P . 
 
The following is the Nichols chart robust stability criterion used in QFT.  The open-loop transfer function 
L(z) is assumed to belong to a set L, which has the form described in Chapter 2.  In addition to the trivial 
assumption of no unstable (including jω-axis) pole/zero cancellation in any L(z) in the set, the criterion 
requires either of the following groups of conditions.  The first group (if one extends [23] to the discrete-
time case) is: (1) L(z) is strictly proper, (2) the uncertain parameters belong to a compact and simple 
connected set, (3) the coefficients of the numerator and denominator of L(z) depend continuously on the 
uncertain parameters, and (4) the coefficients of the highest degree z terms in the numerator and 
denominator of L(z) cannot vanish.  The second set is: (1) at each fixed frequency, the responses of all 
L(z) form a convex set in the complex plane, and (2) the number of unstable poles in L(z) is fixed. 
 
Criterion 4:  Consider the single-loop system shown in Fig. 34.  Assume that the uncertain set L  
satisfies one of the above sets of conditions.  Let L0(z) ∈ L  denote the nominal plant.  The feedback 
system is robust stable if: 
• The nominal closed-loop system corresponding to L0(z) is stable and the single-sheeted Nichols 

envelope does not intersect the point q; or 
• The nominal closed-loop system corresponding to L0(z) is stable and the multiple-sheeted Nichols 

envelope does not intersect any of the points (2k+1)q,  k=0, 1, 2, .... 
 
The condition that the single-sheeted Nichols envelope does not intersect the point q is the same as 
requiring that ( )1 0sj tL z e ω+ = ≠  for all L(z) ∈ L  and for all frequencies ω∈[0,π/ st ].
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5 Examples 
 
Introduction  
 
There are 15 solved examples in this Toolbox.  You can find them in the qftdemo directory with the 
qftex#.m file names (# denotes the example number from 1 to 15).  We have also prepared a special QFT 
demo (to invoke type qftdemo).  The difference between the qftex#.m files and the demo facility is that 
the qftex#.m are standard batch files that users are most comfortable with, while the files in the demo 
facility involve heavier use of Handle Graphics™ (for presentation purpose only and not needed for QFT 
design). 
 
The examples can be divided into five groups.  The first group, examples 1-6, is intended to expose the 
user to QFT in general, and to the use of this Toolbox for design of robust control systems with 
parametric and non-parametric uncertainties and simultaneous specifications.  The first example is the one 
used to describe the QFT design procedure in Feedback Design with QFT.  The second introduces a 
traditional QFT robust tracking problem, which is unlike similar robust tracking problem settings in other 
methods.  The third describes design for a plant with non-parametric uncertainty.  The fourth example 
focuses on a control design of a fixed plant and illustrates that the Toolbox is also useful for classical 
frequency-domain designs.  The fifth is the ACC benchmark design problem consisting of a highly 
vibratory mechanical system.  The sixth example is interesting in that it considers a missile with plants 
evaluated at several flight envelope locations with different non-parametric uncertainties and different 
performance specifications at each location. 
 
The second group, examples 7 and 8, focuses on systems with more than one output, the cascaded design 
problem, illustrating how additional measurements can reduce control bandwidth significantly.  The 
seventh presents a two-output problem where the two loops are closed sequentially in a simplistic 
approach: starting with the inner loop and ending with the outer loop.  The eight examples present the 
natural approach: starting with the outer loop and ending with the inner loop. 
 
The third group, examples 9-11 (and in some sense 14), illustrates application of QFT to practical systems 
such as those having significant mechanical vibration.  The plant model in example 11 is described only 
in terms of its experimentally measured frequency response. 
 
The fourth group, examples 12-14, focuses on design of discrete-time controllers with uncertain plants.  
Example 14 illustrates a continuous-time control design for a sampled-data system. 
 
The fifth group includes a single example.  Example 15 is a 2x2 multi-loop (MIMO) robust performance 
problem.  Although this version of the Toolbox does not fully support MIMO design, its bound 
computation algorithms are general purpose and can be applied to any QFT problems including MIMO.  
However, in order to solve a cascaded-loop or a multi-loop QFT problem, the user must be familiar with 
the QFT’s MIMO algorithms (see [30] and references wherein).  No attempt is made here to explain these 
algorithms or how they were derived.   
 
A few words are in order regarding the examples in this Toolbox.  We see their role as solely to illustrate 
the application of QFT in feedback design.  Practical feedback design involves many steps, e.g., modeling 
and identification, hardware selection, design and implementation.  Therefore, except in few realistic 
cases, we did not attempt to relate examples to real physical problems.  In general, since QFT is a linear, 
time-invariant design method, existence conditions for feedback solutions are the same as for any other 
linear, time-invariant design method. 
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The examples already include solutions.  In some of the examples, you may initially find it difficult to 
follow our thought process used during loop shaping.  Unfortunately, there is no easy recipe we can offer 
for loop shaping except experience.  An excellent exposition of various loop-shaping issues can be found 
in [3].  We suggest that you first try our design for a given example, delete it, then start adding each term 
to the controller to see its effect. 
 
A summary of the examples, divided into the five groups, is shown in Table 3. 
 

Table 3: The Toolbox examples. 

 
Example Description 

1 robust performance (main example) 
2 robust performance (2 DOF QFT tracking) 
3 non-parametric uncertainty 
4 classical design (no uncertainty) 
5 ACC benchmark 
6 robust performance (mixed uncertainties types and 

mixed performance) 
7 robust performance (cascaded-loop: inner → outer) 
8 robust performance (cascaded-loop: outer → inner) 
9 robust performance (flexible mechanical system) 

10 robust performance (inverted pendulum) 
11 robust performance (active vibration isolation) 
12 discrete-time robust performance (main example) 
13 discrete-time robust performance (2 DOF QFT 

tracking) 
14 robust performance (compact disc drive) 
15 robust performance (2x2 MIMO) 

 
The following block diagram (Fig. 46) is applicable to most of the examples in this chapter. 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 46: The single-loop feedback system. 
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Examples 
 
 
Example 1: Main Example 
 
The first example is the one used to describe the details of the QFT design procedure in Feedback Design 
with QFT. 
 



Example 2: 2-DOF Design 

QFT Frequency Domain Control Design Toolbox User’s Guide  5-4 

Example 2: 2-DOF Design  
 
This problem illustrates a traditional QFT tracking problem using a two degrees-of-freedom (2-DOF) 
design of F(s) and G(s) for an uncertain system [13, Ch. 21].  Consider a unity feedback control system 
(Fig. 46) with a parametric uncertain plant model described by 
 

( )
( )

[ ] [ ]1,10 , a 1,10P kaP s : k
s s a

  = = ∈ ∈ 
+  

. 

 
The closed-loop specifications are robust stability in terms of a margin specification 
 

( )ω 1 2, for all , 0
1

. PPG j P
PG

≤ ∈ ω≥
+

 

 
and a tracking specification 
 

( ) ( ) ( ) [ ], for all , 0,10
1

PU L
PGT F j T P

PG
ω ≤ ω ≤ ω ∈ ω∈

+
 

 
where 
 

( ) 2
0.6854( ω+30)

( ω) +4( ω)+19.752U
jT

j j
ω =   and   ( ) 3 2

120
( ω) +17( ω) +828( ω)+120LT
j j j

ω = . 

 
These two transfer functions were arrived at based on upper and lower bound tolerances on the step 
response of the system to reference signals (for details see [13]).   
 
Let us review a two degrees-of-freedom design in QFT.  The first design step involves computation of 
bounds for the robust margin (using sisobnds(1, ...)) and robust tracking (using sisobnds(7,...)) 
problems.  In particular, sisobnds(7,...) computes bounds to guarantee that the variations in the 
tracking transfer function are less or equal to ( ) ( )U LT Tω − ω  in dB. (This does not guarantee that the 
tracking specification is met.)  In the second design step you shape a nominal loop (L0 = P0G(s)) to meet 
its bounds.  The third and final step focuses on shaping of the pre-filter, F(s), so that the tracking transfer 
function lies within its bounds. 
 
You will find out that computing robust tracking bounds (sisobnds(7,...)) takes significantly longer 
turn run compared with all other bounds, e.g., the margin bounds (sisobnds(1,...)).  The reason is 
explained in the Limitations section in Chapter 6.  The problem setup and its QFT solution using the 
Toolbox can be found in the file qftex2.m. 
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Example 3: Non-Parametric Uncertainty 
 
This problem illustrates control design for a plant with a non-parametric uncertainty model (see [12]).  
Consider a control system (Fig. 46) with a non-parametric uncertain plant model described by 
 

( ) ( )ω
0.91
ω

1.001

0.9 +1
m

+1

10( ) 1 ( ) : ( ) stable (s)
(0.1 1)

,P
j

jm mP s s s
s s

 
 = = + ∆ ∆ ∆ < 

+  

. 

 
The specifications are robust stability and robust sensitivity according to 
 

( ) 21 ω 0.089 , for all , 5
1

Pj P
PG

≤ ω ∈ ω ≤
+

. 

 
As discussed in Robust Stability, the associated QFT robust stability constraint is given by 
 

( ) for all , 0
1

, PPG j P
PG

ω < ∞ ∈ ω ≥
+

. 

 
Because some stability margin is always essential to guard against unmodelled high frequency dynamics, 
we use a more realistic robust stability problem in terms of a robust margin specification 
 

( )ω 1 2 for all , 0
1

. , PPG j P
PG

≤ ∈ ω ≥
+

. 

 
The problem setup and its QFT solution using the Toolbox can be found in the file qftex3.m. 
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Example 4: Classical Design for Fixed Plant 
 
This problem illustrates that the Toolbox is equally effective in design of feedback systems that do not 
have uncertainty.  In such cases, it offers an efficient platform for classical frequency response.  Consider 
a fixed plant described by (Fig. 46) 
 

( )
( )
10

1
P s

s s
=

+
. 

 
The specifications are stability, gain margin of at least 1.8, zero steady state error for velocity reference 
commands, and bandwidth limitation of 
 

( )ω 0 707 10
1

. ,
PG j

PG
≤ ω ≥

+
. 

 
The gain margin specification can be solved either sisobnds(1, ...) or sisobnds(6, ...) with Ws = 
1.2 (for which GM = 1.83).  The steady state error specification can be met by including an integrator in 
the controller.  Naturally, since the problem does not involve any uncertainty, it can be solved using feed-
forward open-loop structure.  The problem setup and its QFT solution using the Toolbox can be found in 
the file qftex4.m. 
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Example 5: ACC Benchmark 
 
Consider the American Control Conference (ACC) benchmark control design problem [16,17].  The plant 
corresponds to a parametric uncertain flexible mechanical system (Fig. 46) described by 
 

( ) [ ]
2
1

1 2
2 2

1 2

: 1, 0 5 2
1

P
m
m

kP s m m k . ,
m s m s k

 
  = = = = ∈ 

   + +      

. 

 
The specifications in [16] were given in terms of the time response of the closed-loop system.  However, 
for a frequency response design, the following robust margin specification was found appropriate 
 

( ) 2 25 for all , 0
1

. , PPG j P
PG

ω ≤ ∈ ω ≥
+

. 

 
Note that the plant templates are the interesting part of this example.  In the frequency band ω ∈[1,2], 
each template consists of two non-connected parts, one with 0° phase and the other with -180° phase.  
This is due to that the 2nd order pole has no damping.  One part of the template has an infinite length 
(when ω = ωn).  For example see the one at ω = 1.5.  In the band ω ∈[1,2] all templates have the same 
shape, hence their corresponding robust stability bounds should be similar.  However, due to 
discretization over k and over ω, it is unlikely that you will have a perfect match ω = ωn where the 
template’s length is infinite (resonance).  The templates you see in the range ω ∈ [1,2] have large 
magnitude ranges, but not quite all the way to infinity.  When performing a design, you should be aware 
of this fact.  To distinguish the bounds, you can click on a specific frequency legend button (top left 
corner) to alternate between show/hide of that bound.  Note also that the templates are non-connected in 
the range for ω ∈ [1,2].  The problem setup and its QFT solution using the Toolbox can be found in the 
file qftex5.m. 
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Example 6: Missile Stabilization 
 
The example focuses on the performance of a missile along its vertical trajectory [26].  The missile is roll-
stabilized and has a cruciform wing configuration.  Due to the aim of this missile, only stabilization in the 
vertical plane will be considered using an autopilot that operates the control surfaces.  The general form 
of the block diagram of the stabilized missile is shown in Fig. 47. 
 
 

 
 
 
 
 
 
 
 
 
 

Figure 47: Missile control system. 
 
Modeling of the dynamics to the missile involves aerodynamics, gravitational and propulsive forces.  A 
simplified unstable open loop transfer function relating control-surface deflection to pitch angle relative 
to the vertical is  
 

1 2
3 2

1 2 3 4

a s+aP s
b s +b s +b s+b  

( ) = . 

 
A servomotor, a 27-volt dc armature-controlled electric motor, is used to reduce the effect of 
disturbances.  Its transfer function is 
 

( )
1
107

20 001 0 13 1 . .
M s

s s
=

+ +
. 

 
The amplifier providing the necessary power is 
 

( ) 1
0 01 1.

A s
s  

=
+

. 

 
The rate gyro vertical sensor (voltage proportional to signal) measures pitch angle according to 
 

( ) 2 2
4027

1 2 40 40.

sD s
s s  

=
+ × +

. 

 
To reflect operation at different points in a flight envelope we consider three cases: 
 
 case 1:  a1=335, a2=237, b1=20.7, b2=39, b3=257, b4=-9.5, 
 case 2:  a1=315, a2=227, b1=19.7, b2=37, b3=247, b4=-9.0, 
 case 3:  a1=345, a2=247, b1=23.7, b2=36, b3=267, b4=-10.5. 
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The plant set includes three cases [P1(s),P2(s),P3(s)] corresponding to the above three cases.  Additional 
modeling error is modeled via the multiplicative form 
 

( ) ( )( ) ( ) ( ) [ ]{ }1 : stable, , 0 1 0 05 0 075. , . , .P i i i i i iP s s s j R R= + ∆ ∆ ∆ ω < = . 
 
That is, the plant model has both parametric and non-parametric uncertainties.  Note that each case has a 
different multiplicative error model. 
 
The specifications are robust margin 
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corresponding to each plant element.  The robust input disturbance rejection is 
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     

 

 
corresponds to each plant element.  In essence, the objective here is to find a single controller that meets 
all specifications at the three operation points instead of using the gain scheduling approach.  Note that 
the interlacing property (one unstable open-loop pole trapped between two unstable zeros) dictates that 
the controller must be unstable.  The problem setup and its QFT solution using the Toolbox can be found 
in the file qftex6.m. 
 



Example 7: Inner-Outer Cascaded Design 

QFT Frequency Domain Control Design Toolbox User’s Guide  5-10 

Example 7: Inner-Outer Cascaded Design  
 
Consider again the system in Example 1 but allow an additional measurement at the output of P2(s).  The 
new block diagram is shown in Fig. 48. 
 

 
 
 
 
 
 

Figure 48: The cascaded feedback system. 
 
where the two parametric uncertain plant models are 
 

( )
( )( )

[ ] [ ] ( ) [ ]{ }1 1 2 2
1 : 1 5 20 30    and   :    k 110, , ,P PP s a b P s k ,
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This is a cascaded-loop system.  For many reasons, such as plant uncertainty, sensor noise, nonlinearities, 
limited sensor reliability and forcing rate and/or amplitude saturation, we recommend you use a cascaded-
loop feedback structure if feasible.  This example describes how to execute such designs where the most 
inner loop is designed first.  The control design problem is to find two forward controllers, G1(s) and 
G2(s), such that: 
 
• The inner closed-loop system should be robust stable with at least 50° phase margin for all 2 2PP ∈ . 
 
• The outer closed-loop system should be robust stable with at least 50° phase margin for all 1 1PP ∈  and 

2 2PP ∈ , and should satisfy plant output disturbance rejection to 
 

( ) ( ) ( ) ( )
( ) ( )

[ ]
3 2

1 1 2 22
0 02 64 748 2400Y ,  for all , , 0 10

D 14 4 169

. P Pj j j
j P P ,

j . j

ω + ω + ω +
ω ≤ ∈ ∈ ω∈

ω + ω +
 

 
and should reject plant input disturbance according to 
 

( ) [ ]1 1 2 20 01,  for all , , 0 50. P PY j P P ,
V

ω ≤ ∈ ∈ ω∈ . 

 
The design of the inner loop is straightforward.  However, the design of the outer loop involves some 
additional computations.  First, we have to compute the closed-loop transfer function of the inner loop T2 
 

( ) ( ) ( )
( ) ( )

2 2
2

2 21
P s G s

T s
P s G s

=
+

. 

 
The effective open-loop plant for design of the outer loop is the product 
 

P12(s) = T2(s)P1(s). 
 
Let us now derive the various closed-loop transfer functions for the margin and performance 
specifications. 

- -1G 2G 2P 1PR
V D

Y

1N2N
Σ Σ

ΣΣΣΣ
- -1G 2G 2P 1PR

V D

Y

1N2N
Σ Σ

ΣΣΣΣ
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The margin specification is given by 
 

( )12 1
1 1 2 2

12 1
1 2 for all , 0

1
. , ,P PP G j P P

P G
ω ≤ µ = ∈ ∈ ω ≥

+
. 

 
whose constraint fits the format of the function sisobnds(1,...).  The output disturbance rejection 
specification is given by 
 

( ) ( ) ( )
( ) ( )

[ ]
3 2

1 1 2 22
12 1

0 02 64 748 24001 ,  for all , , 0 10
1 P G 14 4 169

. P Pj j j
P P ,

j . j

ω + ω + ω +
≤ ∈ ∈ ω∈

+ ω + ω +
 

 
whose constraint fits the format of the function sisobnds(2,...).  The input disturbance rejection 
specification is given by 
 

[ ]
12

2
1 1 2 2

12 1
0 01 for all , , 0 50

1
. , P P

P
G P P ,
P G

≤ ∈ ∈ ω∈
+

 

 
which does not readily fit any of the functions in the Toolbox.  However, with the utility functions you 
can transform almost any constraint into a constraint that fits one of the functions sisobnds(1-9,...).  
This is typically accomplished by matching the above transfer function into a similar one from 
sisobnds(1-9,...).  There may be more than one possible match.  In this problem, for example, by 
replacing P12 with its equivalence we have 
 

12 12

2 2
1212 1 2 1
2

1 11

P P
G G P

PP G PGHG G
G

= =
+ ++

 

 
where 
 

12
1 2

2
, ,

PP G G H G
G

= = = . 

 
The transfer function on the right-hand side in the previous equation fits exactly the format of 
sisobnds(3,...).  More importantly, in effect the same loop used in the previous two specifications 
(margin and output disturbance rejection) is also used here since G2 is a fixed function.  Recall that you 
must use the same loop and same nominal loop in computing all bounds in one problem.   
 
The problem setup and its QFT solution using the Toolbox can be found in the file qftex7.m.  Also 
shown is the reduction in control bandwidth compared with the single-loop design of Example 1. 
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Example 8: Outer- Inner Cascaded Design 
 
The setup here is the same as in Example 7.  The difference will be that here we first close the outer loop, 
then follow with closure of the inner loop.  It can be argued that this is the more natural approach for loop 
closure, since the inner loop is introduced mainly to reduce the bandwidth of the outer controller G1.  The 
outer controller should not be designed to achieve robustness against full variations in both P1 and P2, 
only those in P1 with some extra margins.  The inner controller G1 is then designed to reduce this burden 
on G2 (see [3] for details). 
 
The question is then how best to design this G2 to achieve this goal.  Closing first the inner loop (as in 
Example 7) is done arbitrarily, since we cannot predict its effect on the outer loop.  Therefore, we first 
close the outer loop by assuming G2 = ∞ .  A nominal loop L10 is designed to meet these specifications.  
We then design G2 such that, with the given L10, all specifications will be met.  The outer controller G1 is 
then computed from L10 and G2.  The key idea here is of “free uncertainty” which, qualitatively speaking, 
says that G2 can cope with large uncertainty in the main loop with relative low gains than would 
otherwise expected.  For an excellent exposition of cascaded-loop designs and discussion of trade-off 
between the various loops please see [3, Ch. 12].  Note that in practice, the trade-off depends on known 
information on sensor spectrum at each loop.  The salient details of the outer-inner design are now 
described. 
 
In the first step, we close the outer loop.  Assuming G2 = ∞, the stability (margin) problem is simplified to  
 

( )1
1 1 2 2

1
1 2 for all , 0

1
. , ,P PL j P P

L
ω ≤ ∈ ∈ ω ≥

+
 

 
where 
 

2 2
1 1 1 2 2

2 21
,

P GL P G T T
P G

= =
+

. 

 
Since G2 = ∞, T2 = 1, L1 = G1P1.  The performance problem is similar to that in the single-loop example 
(Example 1) 
 

( ) ( ) ( )
( ) ( )

[ ]
3 2

1 1 2 22
1

0 02 64 748 24001 ,  for all , , 0 10
1 L 14 4 169

. P Pj j j
P P ,

j . j

ω + ω + ω +
≤ ∈ ∈ ω∈

+ ω + ω +
. 

 
Again, G2 = ∞ is used.  This approximation makes sense in that G2 should not be designed to help with 
performance at low frequencies.  Note that the actual nominal loop, L10, 
 

2 20
10 1 1 20 20

2 201
,

G PL G PT T
G P

= =
+

 

 
must be designed to meet both specifications above.  It should include anticipated dynamics (only in the 
sense of same numerator and denominator orders) of nominal inner loop.  In this example we assume G1 
to be a simple second order, G2 to have three zeros and four poles, and since both P10 is a simple second 
order and P20 is a gain, easy calculation shows that L10 should have three zeros and eight poles.  For this 
purpose, it is sufficient to design a unique L10 with no zeros and five poles (since we can always add three 
pairs of similar zeros and poles).  
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This L10 should be designed with extra margins anticipating that the true loop has some additional 
uncertainty from P2; this is best taken care of by staying away from the high frequency margin bound.  
Once such L10 is designed, we turn to design of the inner controller G2 that must be designed against all 
specifications and all uncertainties in inner loop and outer loop alike.  This is done as follows.  The inner-
loop margin problem 
 

( )2 2
2 2

2 2
1 2, for all , 0

1
. PP G j P

P G
ω ≤ ∈ ω ≥

+
 

 
can be computed as usual with sisobnds(1,...).  The transfer function for the outer loop margin 
specification looks like 
 

1 1 1 2

1 1 1 21 1
L P G T

L P G T
=

+ +
. 

 
Using  
 

( )10 2 20
1

10 2 20

1L G P
G

P G P
+

=  

 
and the above defined T2 to plug into the transfer function and further simplifying gives the problem 
 

( ) ( )
( ) ( ) [ ]10 1 2 10 20 1 2 2

1 1 2 2
10 20 10 1 10 20 2 10 20 1 2 22

1 2,  for all , , 0 10P PL P P L P P P G
. P P ,

P P L P P P P P L P P P G
+

≤ ∈ ∈ ω∈
+ + +

. 

 
One thing should become obvious at this point.  The loop function in the inner-loop margin problem and 
the loop above are not the same.  However, we have emphasized the fact that in order to design a single 
controller (G2) to achieve simultaneously different specifications, we must translate all such specifications 
into bounds on the same nominal loop.  For this purpose the Toolbox includes the function  
 

bdb = genbnds(ptype,w,Ws,A,B,C,D,P0,phs) 
 
that computes bounds for a general bilinear problem setting 
 

( ) ( ) ( )
( ) ( ) ( )

( )
a b

W
c d

j j G j
j j G j
ω + ω × ω

≤ ω
ω + ω × ω

 

 
where a, b, c and d can be parametric uncertain transfer functions such as those shown above with G2 
being the controller.  The function genbnds computes bounds on the controller G  that are then multiplied 
by the nominal plant of the inner loop P20.   
 
The transfer function for the output disturbance rejection problem is 
 

1 1 2

1
1

Y
D P G T

=
+

. 

 
Using above derivations the problem can be simplified to 
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( ) ( )
( ) ( )

( ) ( ) ( )
( ) ( )

[ ]
3

10 20 10 20 2 2

10 20 10 1 2 10 20 2 10 20 1 2 2

2

1 1 2 22
0 02 64 748 2400

,  for all , , 0 10
14 4 169

. P P

P P P P P G
P P L P P P P P L P P P G

j j j
P P ,

j . j

+
+ + +

ω + ω + ω +
≤ ∈ ∈ ω∈

ω + ω +

 

 
The function sisobnds(10,...) is again used here.  The transfer function for the output disturbance 
rejection problem is 
 

2
1

2

1 1 21

TP
GY

V P G T
=

+
. 

 
Using above derivations the problem can be simplified to 
 

( ) ( )
( ) ( )

[ ]10 20 1 2 2
1 1 2 2

10 20 10 1 2 10 10 1 10 20 1 2 2

0
0 01,  for all , , 0 50P PP P P P G

. P P ,
P P L P P P P P L P P P G

+
≤ ∈ ∈ ω∈

+ + +
. 

 
The function sisobnds(10,...) is again used here. 
 
Once the above bounds are grouped and their intersection is found, we can loop shape the inner controller 
G2 as usual.  Having designed G2, the outer controller can be extracted from 
 

( )10 2 20
1

10 2 20

1L G P
G

P G P
+

= . 

 
This G1 will most likely have higher numerator and denominator orders than those assumed when the 
outer loop was first closed (only the relative degree is the same).  This is not a problem since there are 
acceptable cancellations when forming L10 between T20, P10 and G2. 
 
A typical outer-inner cascaded design may require several iterations.  This is because the first outer-loop 
is not designed against the actual inner loop T2.  Two extreme cases are T2 = 1 or T2 = P2 (as used in this 
example).  The “optimal” design should place the low frequency gain of L10 somewhere in between the 
bound with T2 = 1 and the more difficult ones for T2 = P2.  It is conceivable that you use T2 = 1, and the 
inner-loop design cannot supply enough gain to meet the low-frequency gain requirement.  Outer-inner 
design should be attempted only if there is a significant uncertainty in both P1 and P2.  It will require, 
most likely, a few iterations to decide how to best assign the bandwidth burden to G2. 
 
The problem setup and its QFT solution using the Toolbox can be found the file qftex8.m.  Also 
included is a plot showing the reduction in control bandwidth compared with the single-loop design of 
Example 1: Main Example and the inner-outer cascaded design in Example 7: Inner-Outer Cascaded 
Design. 
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Example 9: Uncertain Flexible Mechanism 
 
This problem was taken from an experimental project at Philips Research Laboratories [18].  Its objective 
was to study the possibilities of advanced control design methods leading to a high performance 
servomechanism design for products such as compact disc players.  Reference [18] contains an excellent 
presentation of the various stages involved in a practical robust control design from the initial theoretical 
study to its experimental implementation.  The control system is shown in Fig. 49 
 

 
 
 
 
 
 
 
 

Figure 49: The servomechanism system. 
 
where the parametric uncertain plant model involves significant mechanical flexibility and is described by 
 

( )
( ) ( ) ( )

( )
( )

1 1 2
2 1 1 2 2

3 2 3 1 2 21 2 3 4
4 1 2

:P gen t a m s s s m s m
s s m
s m m

a j j
K K K K d s c a j d d j d d

P s a c j j d da s a s a s a
a c d d

= 
+ = + + +

= = = + + ++ + + = + 

 

 
and where 
 

Kgen = 0.05 Amp/Volt 
Kt = 0.0133 
Ka = 20 Volt/Volt 
j1 = j2 = 1.46e-6 kgm2 
Km = 34.5e-2 Nm/A 
ds=5e-6 Nms/rad 
dm1 = dm2 = 0.45e-6 Nms/rad 

 
The uncertain stiffness is 
 

Cs ∈ [0.0111,0.0195] N/m. 
 
In addition to robust stability, there are numerous performance specifications as follows. 
 
Tracking: 
 

( )0 1, for all , 0PR VW j P
R
−

ω ≤ ∈ ω ≥ . 

 
Noise Rejection: 
 

( ) 1, for all , 0PU j P
N

ω ≤ ∈ ω ≥ . 
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Disturbance Rejection: 
 

( )0 1, for all , 0PR VW j P
V
−

ω ≤ ∈ ω ≥ . 

 
Control Effort: 
 

( ) 1, for all , 0PU j P
R

ω ≤ ∈ ω≥ , 

 

( ) 1, for all , 0PU j P
V

ω ≤ ∈ ω ≥ . 

 
where 
 

( ) 2 10 (bandwidth)
1
,b

bW s Hz
s
πω

= ω =
+

. 

 
For our QFT design, the following robust stability margin constraint is added. 
 
Robust Margin: 
 

( ) 1 1, for all , 0
1

. PPG j P
PG

ω ≤ ∈ ω≥
+

. 

 
The weights are: nw = 0.01, Uw = 0.33 and Vw = 0.1.  In addition, due to a DSP board limitation, the 
controller and pre-filter poles were limited to approximately 100 Hz.   
 
In this problem, the plant templates are “fat” (i.e., stretched over a large phase range) over a frequency 
range due to the lightly damped mode.  In this frequency band, the mode’s natural frequency will 
significantly change with changes in the uncertain parameter cs.  Such changes typically result in a 
template with large phase variations (e.g., view the templates at ω = 155 and ω = 180 rad/sec).  The 
corresponding robust margin (stability) bounds will also be “fat”. 
 
The strength of QFT is clearly highlighted in this problem: it is straightforward to compare between the 
relative “toughness” of different specifications simply by observing their bounds.  Since we have already 
done so, you will find that the file qftex9 includes only the toughest specifications from the set defined 
above.  Certain bounds for the specifications were not considered here since they were found to lie below 
the ones that are shown.   
 
A few words are in order regarding our approach here for the two-degrees-of-freedom feedback design.  
Some specifications involve transfer functions in terms of both G(s) and F(s).  In our design, we first 
solved for G(s) with F(s) = 1, in essence to reduce closed-loop sensitivity.  After G(s) has been designed, 
we have designed the pre-filter F(s) to improve the tracking response relevant to the specifications.  The 
problem setup and its QFT solution using the Toolbox can be found in the file qftex9.m. 
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Example 10: Inverted Pendulum 
 
Control of an inverted pendulum is a classical problem found in many books.  The example, a part of an 
experimental study [27], illustrates the interaction between mechanical resonances and closed-loop 
performance.  The inverted pendulum with a vertically movable tip mass (to generate uncertainty) is 
connected via a flexible arm to a cart which can move horizontally (Fig. 50). 
 

 
 
 
 
 
 
 
 
 

 
 
 

Figure 50: The inverted pendulum experiment. 
 
The linearized model from the pendulum angle θ to the cart’s motor current I is 
 

( ) ( )
( ) ( )

22 1

2 2 22 /
sn L

gf n n

ss KsP e
I s s s k K s s s g L

− τθ ωα
= = × × ×

+ α − α + ζω + ω −
 

 
where 
 

L ∈ [0.3,0.45] m 
K ∈ [1.5,1.7] m/volt/sec 
α ∈ [15,17] 1/sec 
ωn ∈ [50,70] rad/sec 
ζ ∈ [0.01,0.02] 
τ = 0.014 sec 
g = 9.81 m/s2 
kgf = 0.1 volt/m 

 
The time delay is an engineering approximation for the zero-order hold and computational delay in the 
digitally implemented system.  The specification is 
 

( )P 2 1, for all , 0
1 PG

. PG j Pω ≤ ∈ ω ≥
+

 

 
which is often used as a rule of thumb for such systems.  Note that in the frequency range /g L  the 
template is non-connected including the bounds. 
 
The problem setup and its QFT solution using the Toolbox can be found in the file qftex10.m.  An 
interesting aspect of the design can be seen by a zoom-in around the (-180°,0dB)) point in the lpshape 
screen (the nominal loop wraps around).  Though the template is non-connected due to the uncertainty in 
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the length L, with proper care we can execute a QFT design that guarantees robust stability (note the non-
connected bounds at ω = 50). 
 
Example 11: Active Vibration Isolation 
 
This example involves single-axis active vibration isolation (courtesy of LORD Corporation, Cary NC).  
The experimental plant frequency response is between an accelerometer mounted on a structure and an 
active mount that connects the structure to a vibrating engine.  The feedback system shown in Fig. 51 has 
the open-loop plant P consisting of the combined engine/structure/mount/amplifier. 

 
 
 
 
 
 
 
 
 
 
 

Figure 51: The active vibration isolation feedback system. 
 
The frequency response of the open-loop plant is shown Fig. 52. 
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Figure 52: Measured open-loop frequency response. 

 
There are two primary control objectives.  The first is stability with reasonable margins 
 

( ) 1 2 0
1

. ,
PG j

PG
ω ≤ ω ≥

+
. 

 
The second is disturbance rejection (transmissibility of disturbance acceleration to measured acceleration) 
of -20 dB in the working frequency band 
 

( ) [ ]1 0 1 100 200
1

. ,j , Hz
PG

ω ≤ ω∈
+

. 

 

- controller plant

disturbance forces

measured 
acceleration

disturbance 
acceleration

GΣ ΣP

Q
D

Y

- controller plant

disturbance forces

measured 
acceleration

disturbance 
acceleration

GΣ ΣP

Q
D

Y



Example 11: Active Vibration Isolation 

QFT Frequency Domain Control Design Toolbox User’s Guide  5-19 

Due to hardware constraints, the controller cannot have more than five poles. 
 
It may be possible to identify a nominal rational transfer function whose frequency response is “close” to 
the experimental one; however, this step is not required in QFT design.  Thus, the usual identify-design-
implement-redesign cycle can be completed much more efficiently. 
 
A few words are in order on our loop shaping here.  While inside the lpshape window, view the designed 
elements.  The low frequency real zero and 2nd order pole affect the loop response so that it does not 
cause encirclements.  The high frequency 2nd order zero/pole pair around 2000 rad/sec is basically a 
notch element.  Delete the 2nd order terms and you will see why we need it.  The other terms are not as 
important and in fact can be eliminated by proper model order reduction.  In fact, you can try it as 
follows.   
 
The most important loop response is in the range of 1000-20000 rad/sec, since it is closest to its stability 
bounds there.  When you attempt to reduce the order from five to four, the new loop response is 
unacceptable.  However, if you try to use frequency weights, you may do better.  For example, add a few 
weights with low magnitudes at ω<1000 and ω>20000 and large magnitude in the range 1000<ω<20000.  
You can even experiment with specifying the type of reduction: input, output or both.  The HSV plot with 
weights will be different from that without weights.  Note that the reduced order controller can be 
unstable, since stability cannot be guaranteed with weighted order reduction. 
 
The problem setup and its QFT solution using the Toolbox can be found in the file qftex11.m. 
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Example 12: Main Example (Discrete-Time) 
 
Consider a unity feedback sampled-data system shown in Fig. 53. 
 

 
 
 
 
 
 
 
 

Figure 53: The sampled-data feedback system. 
 
where st  denotes sampling time.  The discrete-time parametric uncertain plant model is given by 
 

( ) ( ) ( ) ( ){ } zoh :   =  Z PP P z = s P s P s s∈    
 
where Z[•] denotes the z-transform, zoh(s) denotes a zero-order hold 
 

( ) 1     
-- sstezoh s
s

=  

 
and where the continuous-time parametric plant model is 
 

( )( )
[ ] [ ] [ ]  1 10  1 5 20 30: , , , , ,P ks k a  b

s a s b
  = ∈ ∈ ∈ 

+ +  
. 

 
If the sampling time is sufficiently small relative to the system’s bandwidth and there is no pole/zero 
cancellation of oscillatory modes in the open-loop functions, we can consider only the discrete-time 
system shown in Fig. 54. 
 

 
 
 
 
 
 
 
 

Figure 54: The discrete-time feedback system. 
 
The control problem is to design the controller, G(z) (H(z) = 1, F(z) = 1), such that the closed-loop system 
is robust stable and satisfies a margin constraint 
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rejects plant output disturbance according to 
 

( ) [ ]
3 2

2
1 64 748 24000 02 , for all , , 0 10

1 14 4 169
.

.
P sj tz z zz P z e ,

PG z z
ω+ + +

≤ ∈ = ω∈
+ + +

 

 
and rejects plant input disturbance according to 
 

( ) [ ]0 01, for all , , 0 50
1

. P sj tP z P z e ,
PG

ω≤ ∈ = ω∈
+

 . 

 
The problem setup and its QFT solution using this Toolbox can be found in the M-file qftex12.m.  This 
example file includes three different solutions: for st  = 0.001, st  = 0.003, and st  = 0.01 seconds.  When 
you edit the file you will see that as st  is increased, the controller becomes more “complex”: 
 

( )

( )

( ) ( )( )
( )( )

0 961950 ,                   0 001
0 8
0 94721 ,                  0 003

0 212
0 3 0 63

1998 ,   0 01
0 2 0 745

.
.

.
.

.
.
. .

.
. .

s

s

s

zG z    t
z
zG z   t

z
z z

G z  t
z z

−
= =

−
−

= =
−

− −
= =

− +

 

 
As st   increases, we may be forced to increase controller order and/or use poles with negative real parts 
in order to satisfy the demand for increasing phase lead.  If st  is increased further, it may be impossible to 
meet all specifications and robustly stabilize the system.  The zero-order hold effect is similar to that of a 
non-minimum phase zero in limiting the achievable benefits of feedback.  Note that in the limit st  → 0, 
this example reduces to Example 1: Main Example. 
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Example 13: 2 DOF Design (Discrete-Time)  
 
This example illustrates is the discrete-time QFT tracking problem with a two-degree-of freedom (2 DOF) 
structure (Fig. 54).  Consider a unity feedback sampled-data system shown above with st  = 0.001 
seconds.  The discrete-time parametric uncertain plant model is given by 
 

( ) ( ) ( ) ( ){ } zoh :   =  Z PP P z = s P s P s s∈    
 
where zoh(s) denotes a zero-order hold 
 

( ) 1     
-- sstezoh s
s

=  

 
and where the continuous-time parametric uncertain plant model is given by 
 

( )
[ ] [ ]  1 10  1 10: , , ,P kas k a

s s a
  = ∈ ∈ 

+  
. 

 
The specifications are: a margin constraint 
 

( ) 1 2, for all , , 0
1

. P s
s

j t
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PG z P z e ,
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ω π ≤ ∈ = ω∈  +
 

 
and a tracking constraint 
 

( ) ( ) ( ) [ ], for all , , 0 10
1

P sj t
L U

PGT F z T P z e ,
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ωω ≤ ≤ ω ∈ = ω∈
+

 

 
where 
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0 6854 30

4 19 752

.

.
U

j
T

j j

ω+
ω =

ω + ω+
   and   ( )

( ) ( ) ( )3 2
120

17 828 120
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j j j
ω =

ω + ω + ω +
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The problem setup and its QFT solution using the Toolbox can be found in the file qftex13.m. 
 



Example 14: CD Mechanism (Sampled-data) 

QFT Frequency Domain Control Design Toolbox User’s Guide  5-23 

Example 14: CD Mechanism (Sampled-data) 
 
This example considers robust control design for a single-loop compact disc mechanism.  Although the 
feedback structure is sampled-data, owing to fast sampling, we perform the design in continuous-time.  A 
compact disc player (Fig. 55) is an optical decoding device that reproduces high-quality data from a 
digitally coded signal recorded as a spiral shaped track on a reflective disc.  The design problem is to 
achieve good track following in the presence of disturbances and parametric plant uncertainty, while 
using mainly measured frequency response data with limited identification (to define nominal natural 
frequencies).  For a complete discussion of both SISO and MIMO QFT designs of this problem see 
[24,25]. 
 

disc

ω

main

radial arm
optical pick-up

φmotor

motor
radial

 
Figure 55: A schematic view of a Compact Disc mechanism. 

 
The difficulty in achieving good track following is due to disturbances and plant uncertainty.  
Disturbances are caused, for example, by external shocks when the CD is used in a car going over a bump 
or in a portable CD used by a runner.  Plant uncertainty is always a factor in mass production due to 
manufacturing tolerances.  Feedback is clearly required in order to achieve good track following. 
 
Figure 56 presents a block-diagram of the radial control loop.  The difference between the track position 
and the laser beam spot position on the disc is detected by the optical system; it generates a radial error eR 
signal via a gain Gopt.  A controller K  feeds the radial motor with the current Irad.  This in turn generates a 
torque resulting in an angular acceleration.  The transfer function from the current Irad to the angular 
displacement φ of the arm is called Gact(s).  A (nonlinear) gain Garm relates the angular displacement with 
the spot movement in the radial direction.  Only the control-error signal eR is available for measurement.  
Assuming constant radial velocity ω, the goal is to control the position of the spot on the disk. 
 

 
 
 
 
 
 
 

 
Figure 56: Block diagram of the radial loop. 

 
Neither the true spot position, which can be interpreted as the system output, nor the track position is 
available as signals.  In current systems K is a continuous-time PID controller.  The radial servo system 
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has a design bandwidth of 500 Hz, a compromise value in which several conflicting factors are taken into 
account: 
 
• accommodation of mechanical shocks acting on the player, 
• achievement of the required disturbance attenuation at the rotational frequency of the disc, necessary 

to cope with significant disc eccentricity, 
• playability of discs containing faults 
• audible noise generated by the actuator, and 
• power consumption. 

 
The CD dynamics are characterized by mechanical vibrations that fall within the controlled bandwidth.  
Even with a reasonable identification of nominal transfer functions from frequency response 
measurements, experience has shown that relatively small identification errors may lead to significant 
reduction in closed-loop performance.  The nominal dynamics (Fig. 57) were measured by averaging over 
several hundreds frequency response tests.  At low frequencies the actuator transfer function from current 
input Irad to position error output eR is a critically stable system with a phase lag of 180° (rigid body 
mode).  The erratic low frequency response is due to low coherence.  At higher frequencies the 
measurement shows parasitic dynamics due to mechanical resonances of the radial arm and mounting 
plate (flexible bending and torsional modes).  Based on practical experience, it is possible to define key 
CD quantities, those that vary from one player to another and from one track to another, which will have a 
significant effect on the dynamics.  These are the three undamped natural frequencies with nominal values 
of 0.8, 1.62 and 4.3 kHz.  To quantify possible variations, we allow each natural frequency to vary 
independently by ±2.5% around its nominal value.  The frequency response set is then computed from the 
measured data (nominal case) and from the above parametric variations.  Details of how it was done can 
be found in [24].  The M-file qftex14 loads in the pre-computed uncertain plant information (125 
elements are stored in sisocd.mat). 
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Figure 57: Measured nominal open-loop frequency response. 

 
The specifications are: robust stability with margins 
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1
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ω ≤ ∈ ω≥
+

 

 
and robust sensitivity such that the closed-loop sensitivity function meets the magnitude specification 
shown in Fig. 58. 
 



Example 14: CD Mechanism (Sampled-data) 

QFT Frequency Domain Control Design Toolbox User’s Guide  5-25 

�������������������������������������������������������������������������������������������������������������������������������������������
�������������������������������������������������������������������������������������������������������������������������������������������
�������������������������������������������������������������������������������������������������������������������������������������������
�������������������������������������������������������������������������������������������������������������������������������������������
�������������������������������������������������������������������������������������������������������������������������������������������
�������������������������������������������������������������������������������������������������������������������������������������������
�������������������������������������������������������������������������������������������������������������������������������������������
�������������������������������������������������������������������������������������������������������������������������������������������
�������������������������������������������������������������������������������������������������������������������������������������������
�������������������������������������������������������������������������������������������������������������������������������������������
�������������������������������������������������������������������������������������������������������������������������������������������
�������������������������������������������������������������������������������������������������������������������������������������������
�������������������������������������������������������������������������������������������������������������������������������������������

10-2

102

101

100

10-1

10-3

10-4

101 102 103 104

Restricted Area

Frequency (Hz)

Mag

.

 
Figure 58: Robust sensitivity reduction specification. 

 
The controller is to be implemented in a discrete-time form.  That is, K is discrete-time and a zero-hold 
separates it from the dynamics Gact(s).  However, due to the fast sampling (relative to plant dynamics and 
closed-loop bandwidth), it is reasonable to measure the frequency response of a closed-loop sensitivity 
function S, then extract from it that of the plant P (the controller response G is known) using  
P = (s-1-1)/G.  The plant response is lumped together with a zero-order hold and digital control law 
computation delay (at a sampling rate of 17.5 kHz).  Therefore, the effective block diagram for the design 
in the continuous-time structure is shown in Fig. 46.  The controller can be designed in continuous-time 
and then be discretized.  It is not a true sampled-data design but the approach is reasonable for 
engineering purposes.  The key assumption is that, within the performance bandwidth and with fast 
sampling, the frequency response of the continuous-time dynamics is similar to that of the discretized 
dynamics.  The implemented design uses a discretized version of G(s) [24]. 
 
A few words are in order regarding templates and bounds here.  For an obvious reason, the plant 
templates show negligible variations in frequencies other than those near the three uncertain natural 
frequencies.  The template at the third natural frequency of 4.3 kHz exhibits the most phase and 
magnitude variations.  In fact, the spacing between the template points is rather crude, which results in the 
non-smooth stability bound at this frequency (a combination of arcs).  A closer spacing will smoothen the 
boundary, however, for design purposes if the loop is expected to lie away from the bound at that 
frequency, the present spacing suffices. 
 
This example clearly illustrates the effects of the non-minimum-phase plant zero and of Bode sensitivity 
integral.  To achieve the desired small sensitivity up to 200 Hz, we must sacrifice sensitivity at another 
frequency range nearby; specifically, we accept values larger than unity in the next immediate decade.  In 
addition, it shows that sacrificing low-frequency phase margin can help in improving feedback properties 
at higher frequencies (without conditional stability one cannot get such a high low-frequency gain and 
minimize control bandwidth). 
 
A few words are in order on our loop shaping here.  While inside the lpshape screen, view the designed 
elements.  There are two notches at around 5300 and 9500 rad/sec (shown by separate 2nd order zeros 
and poles due to model order reduction).  Delete those elements and you will see why we need them.  The 
high gain at low frequencies can be achieved only with a proper sacrifice of loop phase at that range (the 
2nd order pole and subsequent zero).  This example clearly illustrates the concept of “phase lag 
maximization” [3].  For more details on loop shaping for this problem see [29]. 
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The problem setup and its QFT solution using the Toolbox can be found in the file qftex14.m. 
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Example 15: Multi-Loop Design 
 
This problem illustrates a 2-input 2-output robust performance problem.  The problem is rather simplistic 
and is not meant to reflect real-life problems, nor does it explore advantages and disadvantages of MIMO 
QFT design.  It is meant to demonstrate use of the Toolbox in MIMO problems.  Consider a unity 
feedback control system (Fig. 46) with a parametric uncertain plant model described by 
 

[ ]11 12
221 22

1 3 0 5 : 6 81 80 03 10
.( ) ,

.
a ap pP s ap p s as

P  +  = = = ∈      + + 
. 

 
The closed-loop specifications are robust stability and robust margin in each channel 
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where e

iiP  denotes the open-loop function at the i’th channel when all other channels (loops) are closed.  
Finally, the performance specification is given in terms of the sensitivity function 
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(I is a 2x2 identity matrix). 
 
The MIMO QFT sequential design procedure considers diagonal controllers, hence 
 

( ) 1
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The sequential procedure involves a sequential single-loop design of each (channel) in the system.  In this 
example there are two channels (loops).  Under mild assumptions (related to unstable pole/zero 
cancellations and fixed decentralized modes), robust stability of the MIMO system is related to the 
stability of MIMO characteristic equation det(I+PG).  It can be expanded as follows 
 

( ) ( )( )11 1 22 21 1 eI PG p g p g+ = + +det . 

 
That is, the MIMO system is robust stable if each of the two functions on the right-hand side of the above 
equality is robust stable.  The relations 
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describe the equivalent open-loop transfer function of each channel assuming the other has been closed.  
They can be used to establish stability margins as done in the single-loop case.   
 
The inequalities corresponding to the robust margin problem in the first channel are 
 

( )

( )

11 1

1
22

11 , for all 0
1 8

det 11 , for all 0
1 8

P

P

p g j P , ω
.

P g j P , ω
p .

+ ω ≥ ∈ ≥

+ ω ≥ ∈ ≥

 

 
while the inequalities corresponding to robust sensitivity problems in the first channel are 
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Note that all closed-loop transfer functions depend on both g1(s) and g2(s), yet g2(s) is unknown.  The 
above inequality reflects some conservatism due to this fact.  The bounds for each of the above four 
constraints can be solved using the function genbnds. 
 
Based on the characteristic equation, the nominal plant in the 1st channel is some plant p11,nom(s) from the 
family P, and the nominal loop function is L11,nom(s) = p11,nom(s)g1(s). 
 
After the controller g1(s) is designed such that 1+L11,nom(s) is stable and the above four constraint are 
satisfied, we can turn our attention to the next channel.  In this example, design of g2(s) is also the last 
step in the sequential design, hence, it is the only remaining unknown controller to be designed. 
 
The inequalities corresponding to the robust margin problem in the 1st and 2nd channels are 
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The inequalities corresponding to robust sensitivity problems in the 2nd channel are 
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Again, the bounds for each of the above four constraints can be solved using the function genbnds.  The 
nominal plant in the 2nd channel is some plant ( )22,

e
nomp s  (with same p11,nom) from the family P , and 

the nominal loop function is ( ) ( ) ( )22 22 2, ,
e

nom nomL s p s g s= . 
 
The problem setup and its QFT solution using the Toolbox can be found in the file qftex15.m. 
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6 Bounds and Loop Shaping 
 
Introduction 
 
This chapter describes the available functions for performing the two most important aspects in a QFT 
design: bound computation and loop shaping.  
 
The first section introduces the basic usage of the two bound computation managers sisobnds and 
genbnds. 
 
The second section covers the general loop-shaping functions available within the Interactive Design 
Environments lpshape, and pfshape. 
 
Finally, the last section focuses on the notation and format used for continuous-time and discrete-time 
elements during loop shaping. 
 
The Bound Computation Managers 
 
This section introduces the basic usage of the two bound computation managers sisobnds and genbnds.  
sisobnds is applicable to single loop systems and genbnds is applicable to cascaded-loop and 
(sequentially-closed) multi-loop systems. 
 
The algorithms used to compute the single-loop bounds (sisobnds) require computer memory space 
linearly related to the number of plant cases, frequencies and phases (except problem ptype = 7).  If 
MATLAB returns the message: “out of memory...,” consider reducing the number of cases and/or 
frequencies and/or phases.  In general, if the number of plant cases is n and the length of the phase array 
is m, the bound solving manager sisobnds (excluding problem ptype = 7) utilizes approximately three 
(nxm) real matrices, while problem ptype = 7 utilizes approximately three (n! / (n - 2)! m)x  real matrices 
(thus, problem ptype = 7 takes the longest time to compute bounds).   
 
Single Loop Bound Manager 
 
A generic call to the function sisobnds is as follows 
 
bdb = sisobnds(ptype,w,Ws,P,R,nom,C,loc,phs) 

 
The function requires a myriad of inputs, yet not all need be specified.  Those that are not specified or 
entered as an empty matrix [ ] will automatically revert to their default values.  The following table 
describes default values. 
 

Arguments Defaults 
P,G,H 1 
R 0 
nom 1 
loc 1 
phs [0°:-5°:-360°] 

 
Below you will find explanations for the input and output variables with respect to the block diagram 
below. 
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bdb 
 
Contains the bounds (in dB) on the nominal loop 0 0 0 0L L G H= .  The following is the general structure of 
a bound vector: 
 

[upper bound; lower bound; frequency; problem type] 
 
where upper bound and lower bound are vectors denoting where the nominal loop should lie above and 
below, respectively. 
 
A bound can take on four different types at a fixed frequency and a fixed phase: 
 
• The above bound is a real number and the below bound is a real number, or only one of the two 

exists.  In such cases, the loop response must lie above the above bound or below the below bound. 
• The above or below bounds (or both) can be any positive number, in which case the above bound is 

set to 20*log10(myeps) dB and the below bound is set to 20*log10(1/myeps) dB (myeps=1e-16).  That 
is, for example, if the above bound is 20*log10(myeps), there is no minimum gain necessary for the 
loop magnitude.  For convenience, the function plotbnds does not show such portions of a bound. 

• There is no real positive controller gain that can solve the problem (referred to as “no LTI 
solution...”), in which case the above bound is set to 248 dB and the below bound is set to -248 dB.   

• The bound is non-connected.  This situation typically occurs with poor template boundary grid and in 
genbnds(...).  Another possibility is due to intersection, in which case you should loop shape with 
an un-intersected set of bounds.  The above bound is set to 302 dB and the below bound is set to -302 
dB.   

 
Note: The bound computation algorithms can produce unrealistic outputs (for the most part, you should 
not encounter such cases).  For instance, take a look at the input disturbance bounds in Example 9: 
Uncertain Flexible Mechanism.  The isolated points representing bounds should have not been there and 
are due to numerical inaccuracy.  A bound, however, should always prohibit the nominal loop from the 
critical point (with the exception of genbnds(...) with c(jω) ≠ 1).  If you zoom in around the critical 
point (-180°,0dB) in the input disturbance bound plot, you will see that there is a bound prohibiting the 
nominal loop from that region. 
 
ptype 
 
The integer argument ptype defines the particular closed-loop problem of interest as shown below. 
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2 2

1
1

Ws
PGH

≤
+

 

 
3 31

P Ws
PGH

≤
+

 

 
4 41

G Ws
PGH

≤
+

 

 
5 51

GH Ws
PGH

≤
+

 

 
6 61

PG Ws
PGH

≤
+

 

 
7 7 71

£a b
PGWs F Ws
PGH

≤
+

 

 
8 81

H Ws
PGH

≤
+

 

 
9 91

PH Ws
PGH

≤
+

 

 
w 
 
A frequency vector (rad/sec; must be a subset of the frequencies in an FRD model). 
 
Ws 
 
A performance weight. Can be a single number, vector or an LTI model  AN LTI model can be used to 
specify different specifications for each plant case at each frequency. 
 
In sisobnds(7,...), the specification must consist of upper and lower values (see Example 2); 
 
R 
 
A disk radius in a multiplicative uncertain plant model.  Specific values can be assigned to each case in a 
mixed parametric/non-parametric uncertain plant.  It is represented by an LTI/FRD object. 
 
nom 
 
An integer corresponding to the nominal plant index in the LTI/FRD model.  If there is another 
parametric uncertain transfer function in the loop (i.e., C) then nom should be a two-number vector 
specifying both nominal cases for P and for C. 
 
loc 
 
An integer (1 or 2) indicating location of the controller to be designed.  loc = 1 (default) implies G(s) is 
the controller and hence the input variable c is the known H(s).  loc = 2 implies H(s) is the controller 
and c is the known G(s). 
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phs 
 
A vector defining the resolution of the computed bounds along the phase axis.  The default is [0°:-5°:-
360°].  
 
Note: If the phase used for computing bounds is not the default one, it must also be used in all other 
functions.  The phase -180° should always be part of the phase vector phs. 
 
General Bound Manager 
 
The special function genbnds was written with the advanced user in mind.  It can be used in cascaded-
loop designs (Example 8) and sequentially closed multi-loop designs (Example 15).  With ptype=10, 
genbnds can be used to solve all the problems in sisobnds except for ptype = 7. 
 
The general call to the function genbnds is as follows 
 

bdb = genbnds(ptype,w,Ws,A,B,C,D,Pnom,phs); 
 
Note that if C≠1 the resulting bounds may not include the critical point (-1,0) or (-180°, 0dB). 
 
ptype 
 
The argument ptype defines the particular closed-loop transfer function of interest as shown in the table 
below 
 

ptype I/O Problem 
 

10 
A BG
C DG

Ws+
+

≤ 10  

 
11 

A B G
C DG

Ws
+
+

≤ 11  

 
A, B, C, and D 
 
A, B, C, D, and P0 can be constants or LTI/FRD models.  They are functions of the various plants and 
controllers in cascaded-loop and multi-loop systems. 
 
Pnom 
 
The input argument Pnom denotes the nominal plant such that the bounds are defined for the open loop 
function L = G*Pnom.  Note that Pnom is not an index (as in sisobnds), rather it is an LTI/FRD object of 
the nominal plant model. 
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The Interactive Design Environment (IDE) 
 
This section covers the general options available within the Interactive Design Environments lpshape 
and pfshape.  The screen captures shown here are of an lpshape session running on a PC.  Note that no 
matter what platform is being used the menus will only differ in a cosmetic sense. 
 
IDE Menus 
 
The Interactive Design Environment (IDE) functions provide access to the specific commands used in a 
QFT design [19].  The commands are now shown for the continuous-time loop-shaping function lpshape.  
A typical screen is shown below. 
 

 
 
File 

 
 
The File menu contains items related to opening and saving IDE created files and sending information to 
the workspace. 
 
Open... displays a file selection dialog box that asks you for the name of the MAT-file created from 
within IDE using the Save option or created from the command line using the getqft function. 
 
Save... displays a file selection dialog box that asks you for the name of a MAT-type file in which to store 
the present elements. 
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Each IDE function will save into a user specified file with a default extension specified in the following 
table.  (these choices are not unique, any other extension can be used).  
 

IDE Function File Name Extension 
lpshape *.shp (continuous time) 

*.dsh (discrete time) 
pfshape *.fsh (continuous time) 

*.dfs (discrete time) 
 
Import... opens a dialog box that allows you to enter a variable name for an LTI model to be transferred 
from the workspace. 
 
Export... opens a dialog box that allows you to enter a variable name for the LTI model to be transferred 
to the workspace. 
 
Print to Figure sends the graphical contents to a new figure for custom editing and exporting.  See 
MATLAB’s Reference Guide for more details. 
 
Exit prompts you to exit and save the current design, exit without saving the current design, or cancel the 
exit. 
 
View 

 
 
Zoom toggles the zoom mode between on or off. 
 
Full sets the axis limits to the FULL setting.  The FULL setting is defined initially by the environment 
and can be changed using the Axis... option described later. 
 
Axis... opens a dialog box that allows you to manually specify axis limits. 
 
Nichols Grid toggles the display of the Nichols grid over the open-loop grid lines. 
 
Tools 

 
 
The Tools menu contains general commands such as viewing the plant elements, controller discretization, 
stability analysis, altering the working frequency array, external bode plots, and storing and recalling 
elements while within the design environment. 
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Plant displays the plant elements (unless entered as frequency response). 
 
Discretize… provides a dialog to compare the continuous-time controller with a discretized controller 
using various user-selected discretization methods and sampling time. 
 

 
 
Stability analyzes the nominal closed-loop stability (this is done by computing the eigenvalues of the  
closed-loop state-space matrix). 
 
Frequency... opens a dialog box that allows you to change the first, last, and number of points in the 
working frequency array.  The Pad Frequency Vector option in this mode adds additional points to 
improve smoothness of the frequency response plot when underdamped second-order elements are 
present.  The Pad option may add a large number of frequencies and hence slow down the interactive 
design process.  As values of damping and natural frequencies tend to be modified during a design 
process, try to periodically turn off then on again the Pad option.  This will clean up the frequency vector. 
 
Warning: It is possible that between two consecutive frequency points the phase of the response plot is 
discontinuous with jumps of more than 180° but less than 360°.  This may occur when the resolution of 
frequency array is too crude at that band and the program will have a hard time figuring out how to 
connect a line between these two response points.  In general, be careful when you see a straight line 
plotted with a near 180° span.  Whenever possible first use  
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The significance of such a change is negligible from a design view point. 
 
Bode Plots… plots the current design in a bode plot format.  The open loop, closed-loop sensitivity and 
closed-loop complimentary functions are shown. 
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Store saves the present set of elements within the IDE (useful only within IDE for quick recall of a 
previous design). 
 
Recall retrieves the last saved set of elements from within the IDE.  If none have been saved, then this 
option returns the initial elements. 
 
Design Control Panel 
 
Pointer Info 

 
 
The Pointer Info section provides mouse movement feedback whether the mouse is over the loop 
response or not.  If the mouse is over the loop response, the nearest frequency is displayed in the units 
specified by the radio buttons. 
 
Controller Elements 

 
 
The Controller Elements section provides both numerical and graphical addition of elements.  For mode 
details, please see the Design Elements section later in this chapter. 
 
Adding Elements Numerically is accomplished by selecting a desired element from the Element 
Popup, entering the required values in the enabled input fields, and pressing Add Using Input Fields.  
The new loop response is displayed with the original for immediate comparison.  The sliders to the right 
of each input field can be used to fine tune individual parameters of the element.  Pressing Apply or 
selecting a new element to add or edit permanently accepts the element.  The element can be deleted by 
pressing the Delete button. 
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Adding Elements Graphically is accomplished by selecting a desired element from the Element Popup 
and floating the mouse over the loop response.  

 
Gain takes the difference between the initial frequency location and the current pointer location to 
modify the DC gain. 
 
First Order adds a real, stable pole (zero) based on a negative (positive) phase difference at the 
selected frequency (red dot) between the initial location and the current pointer location.  The 
necessary pole (zero) value is computed to result in the desired phase change.  If the desired term is a 
pole, the new loop frequency response will have a magnitude reduction at the frequency.  A zero will 
result in a magnitude increase at that frequency. 
 
Limitation: |phase difference| < 88 degrees. 
 
Exception: In pfshape, the implementation is based on magnitude difference. 
 
Second Order adds a stable complex pole (zero) based on a negative (positive) phase difference and 
magnitude difference at the selected frequency (red dot) between the initial location and the current 
pointer location.  The necessary natural frequency and damping ratio are computed to matched 
desired phase and magnitude change.  Due to the nonlinear relation between natural frequency and 
damping ration and the associated phase and magnitudes, the feasible domain is limited (this 
limitations is removed in the Super 2nd element below). 
 
Limitation: |phase difference| < 176 degrees. 
 
Exception: In pfshape, the implementation is based on magnitude difference. 
 
Lead/Lag adds a stable lead (lag) based on a negative (positive) phase difference at the selected 
frequency (red dot) between the initial location and the current pointer location.  The necessary zero 
and pole pair are computed such that the element achieves its maximal phase at the selected 
frequency.  If the desired term is a lag, the new loop frequency response will have a magnitude 
reduction at the frequency.  A lead will result in a magnitude increase at that frequency. 
 
Limitation: |phase difference| < 88 degrees. 
 
Notch adds a notch based on the magnitude difference at the selected frequency (red dot) between the 
initial location and the current pointer location.  If a magnitude reduction is desired, the pole’s 
damping ration is set to 0.5 and the other is computed to achieve the magnitude change at the selected 
frequency. 
 
Super 2nd adds a stable 2nd order zero over a stable 2nd order pole based on the phase difference 
and magnitude difference at the selected frequency (red dot) between the initial location and the 
current pointer location. The four free parameters allow for any match of desired magnitude and 
phase change.  
 
Limitation: |phase difference| < 176 degrees. 
 
Complex Lead/Lag adds a stable complex zero and a stable complex pole based on the phase 
difference and magnitude difference at the selected frequency (red dot) between the initial location 
and the current pointer location.  Both terms have damping ratios of 0.45.  This term can actually 
provide either lead or lag dynamics.  
 
Limitation: |phase difference| < 176 degrees. 
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Note that the mouse pointer changes to a directional pointer representing the type of movement that 
will be registered when it is located on any point on the response plot (but not on the straight line 
connecting any two points).  Upon selection of a point, a (red) marker appears on the plot at that 
frequency.  Only after this point has been found, can the response plot be grabbed and moved to a 
new location using the selected element.  To continue moving the plot you can edit the value of the 
new element by re-grabbing the marker.  The process of dragging may appear slow on low-end 
computers (especially if the frequency vector is large). 
 
In general, in order to relocate the frequency response at the chosen frequency to a new location on 
the plot (with different magnitude and phase), for an element type select the following: 

 
Element Type Match Magnitude 

Change 
Match Phase 

Change 
real pole/zero no yes 
complex pole/zero yes yes 
lead/lag no yes 
notch yes no 
super 2nd yes yes 
complex lead/lag no yes 

 
Note:  The super 2nd element offers the best chance of successfully matching both magnitude and 
phase (with realizable elements), and can be added only via a mouse operation; upon completion, the 
super element is stored as separate zero and pole elements (i.e., it cannot be edited, deleted or iterated 
on as a super 2nd). 
 
Note: Only stable and minimum-phase elements can be added via mouse operations. 
 
If the mouse operation on a certain element calls for complex coefficients, unstable, or non-minimum 
phase, you will be prompted for such a situation and the element will not be implemented (see Table 
4: Standard continuous-time elements in this Toolbox and Table 5: Standard discrete-time elements in 
this Toolbox for specific formats). 
 

Editing is accomplished by selecting the desired element and either editing the parameters in the input 
fields or using the sliders to tune the parameters.  You can continue to edit the particular element as long 
as the red dot is visible. 
 
Deleting is accomplished by selecting the desired elements (the gain cannot be deleted) and pressing the 
Delete button.  Multiple elements can be selected by holding down the <ctrl> or <shift> keys while 
selecting.   
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Reduction is accomplished by selecting more than one element and pressing the Reduction button.  A 
typical screen is shown below. 
 

 
 
The algorithms were adapted from [20,28] (for an open-loop and closed-loop Model Reduction Toolbox 
please contact the author of [20,28] or us).  The reduction is not applicable to discrete-time systems.  In 
this mode, you first select terms from the displayed elements.  Only a proper or strictly proper controller 
with stable poles (those with negative real part) can be selected for reduction.  Pressing the Reduction 
button results in a new dialog box showing a plot of the Hankel Singular Values.  At this stage you can do 
the following: 
 

Reduce - performs reduction to the user specified order.  The result will be the reduced-order 
response plot (dashed line) superimposed over that of the full-order plot and a list of the reduced-
order elements.    
 
Define Weights - replaces the HSV plot with the magnitude plot of the frequency response that 
allows you to place affine frequency weights for reduction.  These weights can be used to allow 
“trade-off” of errors between full-order and reduced order frequency responses.  A typical screen is 
shown below. 
 
Cancel - ignore the present reduction and close HSV dialog box. 
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The Line menu contains all the operations that can be performed on line segments.  Each option 
is enabled or disabled depending upon the selection of line segments. 
 
Line 

 
 
Add Line allows addition of new line segments.  In the process of adding a new line, if any line 
segments are either above or below they are eliminated.  All new lines are the default type of 
Both (Red).   
 
Add Point allows addition of new points. 
 
Move, Delete, Break, Connect, and Type are only enabled when line segments are selected.  
Line segments are selected by either placing the mouse pointer over the desired segment or 
using the Select option. 
 
Move changes the pointer into a fleur (four-headed arrow) and upon holding down the mouse 
button over the specific segment(s) allows the user to move the selected segments to the desired 
location.  Move can only be used with a single segment or segments that are connected. 
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Delete removes selected line segments. 
 
Break separates segments on two ends of a selected line. 
 
Connect links any two selected segments. 
 
Type 

 
 
Type allows for the changing of a line segment designation.  The possible designations are: 
Input, Output and Input-Output (Both), each signifying the type of frequency weighted 
model order reduction in effect over that frequency range. 
 
Select 

 
 
Select allows the user to select either All or None of the present line segments. 
 

The Options menu includes a number of miscellaneous operations. 
 
Options 

 
 

Full returns the axis to its original limits. 
 
Zoom allows the user to change the present axis limits by defining new axis limits with a 
bounding box. 
 
Clear removes all present line segments. 
 
Open... opens a file dialog box that allows for the retrieval of saved line segments. 
 
Save... opens a file dialog box that allows for the saving of present line segments. 
 

Select - cancels the present reduction and return to the element selection mode. 
 
Done - accepts the present reduction and close the HSV dialog box. 
 
In a discrete-time setting, the reduction algorithms transform the controller into a continuous-time 
version using any of the methods in the D2C Conversion pull down menu, followed by the reduction 
and then transformed back to the discrete-time setting using the method selected from the C2D 
Conversion pull down menu.  You may need to experiment with different combinations of these 
methods to achieve best reduction. 
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Hints: 

• Though you are reducing the controller’s order with an open-loop measure, in effect you will be 
considering its effect on the closed-loop response.  This is because the reduction effects are 
shown together with closed-loop specifications, i.e., the bounds. 

• Stability of the reduced order model that was obtained using with frequency weights is not 
guaranteed. 

• The selected order of the reduced-order model should be based on the relative values of Hankel 
Singular Values (HSV) shown in the plot.  Look for a sharp drop in HSV value from one order 
to the next. 

• After reduction, the relative degree of the controller may not be the same as before reduction 
(usually the returned relative degree is one). 

• The reduction is done by first deriving a minimal-order balanced model.  In some cases, you 
will have almost non-minimal modes removed even before reduction is done. 

• If you are working with a large-order controller (say 20), or there is a large magnitude 
difference between the largest pole and smallest pole, you should perform reduction in several 
steps.  At each step you will select a subset from all possible elements, preferably those with 
“close” break frequencies. 

• Try to experiment with weight line types to improve quality of model fit. 
• Try to avoid repeated poles in model reduction function.  When repeated poles are present, the 

reduction algorithms must use logm; a slow and numerically suspect function.  To avoid this 
situation, for example, in a repeated pair we suggest that you first modify the value of one pole 
by a small number (which will not affect loop response). 

• Reduction may result in a new zero very far from the origin (in either left or right half planes).  
Such a zero, is often much faster than the rest of the poles and zeros, and can be deleted without 
affecting the response.   

 
Bounds 

 
 
The Bounds section provides the ability to selectively turn bounds on and off.  The first value is the 
frequency at which the bound was computed, the second is its color, and the third is its display state of on 
or off.  Double-clicking a selected bound toggles its display state. 
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Design Elements 
 
The following notation and format is used for continuous continuous-time transfer function elements: 
 

Table 4: Standard continuous-time elements in this Toolbox 

 
Element Mathematical Form 
Real pole 1

1/s p +
 

Real zero 1/s z +  
Complex pole 

2 2
1
2 1/ /n ns sω + ζ ω +

 

Complex zero 2 2 2 1/ /n ns sω + ζ ω +  
Super 2nd (2/2) 2

1 2
2

1 2

1
1

a s a s
b s b s

+

+

+

+
 

Integrator/Differentiator 1   or  n
n s

s
 

Lead or Lag 1
1

/
/

s z
s p

+
+

 

Notch 
( )

2 2
1

1 22 2
2

2 1 0 5  0 5
2 1

/ /
. .

/ /
n n

n n

s s or
s s

ω + ζ ω +
ζ = ζ =

ω + ζ ω +
 

Complex lead 
( )

2 2 22
2 2 22

0 45.
b

s ads a b d
s ds b a

+

+

+
=

+
 

 
Within the continuous-time IDE, the elements are always visible within the Element Listbox, for 
example, as shown below. 
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Complex poles and zeros are shown with their [zeta, wn] values followed by the root location (one from 
the complex-conjugate pair).  Lead/Lag elements are shown with their [phase, frequency] values followed 
by the values of the zero and pole.  Notch elements are shown with their [zeta1,zeta2,wn] values.  The 
transfer function corresponding to the above elements (Table 4) is 
 

2 2

2 2
2 2

2 2

2 0 1 2 0 11 11 11 1 1 1 123 5 7710 123 5 5 973 771
1 1 12 0 5 2 0 51 11 11111 20 2644 7744 77

. .

.. .
. .

.

s ss ss s

s ss s s ss s

⋅ ⋅
+ + + ++ +

× × × × × × × ×
+ ⋅ ⋅+ ++ + + +

 

 
Treatment of elements in discrete-time is quite different in the way in how you define them.  Although we 
offer similar elements as used in continuous-time types, such as 1st or 2nd orders, you have two choices 
to define a discrete-time controller (or pre-filter).  With IDE functions, discrete-time elements are 
manipulated in terms of their continuous-time equivalence (using z-domain transform) as shown in table 
below ( st  = sampling time in seconds).  That is, to add a first-order pole, you will enter the continuous-
time value, e.g., p = 20, and the program will convert it to its discrete-time value as shown below. 
 

Table 5: Standard discrete-time elements in this Toolbox 

 
Element Mathematical Form 
Real pole 1 a z

z a
− ⋅

−
 

spta e−=  (p = equivalent s-plane pole location) 
Real zero 

1
z b

b z
−

− ⋅
 

sztb e−=   (z = equivalent s-plane zero location) 
Complex Pole ( )

( )
( )
( )

2 2

2
1 2cos cos

cos 2cos

s s s

s s

at at at
s s

at at
s s

bt e e bt e z

bt e z bt e z e

− − −

− − −
− +

⋅
− +

 
21,n na b= ζω = ω − ζ   (s-plane equivalence) 

Complex Zero ( )
( )

( )
( )

2

2 2
cos 2cos

1 2cos cos

s s

s s s

at at
s s

at at at
s s

bt e z bt e z e

bt e e bt e z

− − −

− − −
− +

⋅
− +

 
21,n na b= ζω = ω − ζ   (s-plane equivalence) 

Super 2nd 
(2/2) 

2
1 2 1 2

2
1 2 1 2

1 1
1 1

b b a z a z
a a b z b z

+ +

+ +

+ +
⋅

+ +
 

Predict/Delay   or  -n nz z  
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Table 5 (Cont.): Standard discrete-time elements in this Toolbox 
 

Element Mathematical Form 
Integrator or 
Differentiator 

#  Integ Diff 

  1 
1−

st z
z

 1−

s

z
t z

 

  2 

( )

2

21
st z

z −
 ( )2

2
1

s

z
t z
−

 

  3 ( )
( )

3

3
1

1
st z z

z
+

−
 ( )

( )

3

3
1

1s

z
t z z

−

+
 

Lead or Lag 1
1
− −
− −

p z r
r z p

 

Notch ( )
( )

( )
( )

2 22

2 22
1 2 2

1 2 2

cos cos

cos cos

− − − −

− − −−
− + − +

⋅
− + − +

s s s s

s s s

ct ct at at
s s

at at ctcT
s s

dt e z e z bt e z e

bt e z e z dt e z e
 

a c b dn n n n= = = − = −ζ ω ζ ω ω ζ ω ζ1 2 1
2

2
21 1, , ,  

Complex Lead ( )
( )

( )
( )

1 1 1 1

2 2 2 2

2 22
1 1

2 22
2 2

2

1 2cos 2cos

1 2cos 2cos

1 0 45 ( -domain equivalence), , .

s s s s

s s s s

a t a t a t a t
s s

a t a t a t a t
s s

n n

b t e e z b t e z e

b t e e z b t e z e

a b s

− − − −

− − − −
− + − +

⋅
− + − +

= ζω = ω − ζ ζ =

 

 
One choice to define elements is to do so within any IDE function.  In that mode you enter values in 
continuous-time and the program uses the z-transform to convert them into discrete-time (as shown 
above).  It is easier to predict the resulting frequency response of continuous-time over discrete-time 
elements within IDE.  A good discussion on discrete-time frequency response of various elements can be 
found in [21]. 
 
Note that as done in the continuous-time IDE, all elements have unity DC gain.  The only difference is in 
integrator/differentiator elements.  A continuous-time integrator has a unity gain at ω = 1, while a 
discrete-time integrator from z-transform tables requires an additional ts gain to have unity gain at that 
frequency. 
 
Within the discrete-time IDE, the elements are always visible within the Element Listbox, for example, 
as shown below. 0 01sec..st =  
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Real poles and zeros are shown with their continuous-time location (used only for ease of manipulation 
within IDE) followed by the z-transformed discrete-time root location.  Complex poles and zeros are 
shown with their continuous-time [zeta, wn] values followed by the z-transformed discrete-time root 
location.  Lead/Lag elements are shown with their continuous-time [phase, frequency] values followed by 
the values of the z-transformed discrete-time zero and pole.  Notch elements are shown only with their 
continuous-time [zeta1,zeta2,wn] values.  The transfer function corresponding to the above elements in 
Table 5 is therefore (using format short e) 
 

2

2 2

2

9 995 4 7 3712 1  9 7045 11
1 9 99 1 2 9554 2 6 7436 1 4 1148 1

0 5082 0 4493 2 3698 0 6393 0 6984 0 9854 0 8187
1 9575 0 1453 0 7859 0 3679

. - . -- . -
- - . - . - - . - . -

. . . ( - . ) . ( - . . )
. - . - . .

e z e zz z e
z z e e z z e z e

z z z z z
z z z z

× × × ×
+

+ + +
× × ×

+

 

 
The second choice to define elements is to pass them as input arguments into an IDE function.  In that 
mode you are passing true discrete-time LTI model.  This may lead to some interesting results.  The 
inverse z-transform of a discrete-time pole (or zero) located between [-1,0) is a single complex-valued 
continuous-time pole (zero). 
 
For example, suppose you do the following  
 
P = tf(conv([1,0],[1,.5]),conv([1,-.3],conv([1,-.2],[1,-.7]))); 

P.Ts = 0.01; 

lpshape([],[],P) 

 
Within the discrete-time IDE, if you select Tools|Plant, the plant elements are displayed in the QFT 
Toolbox standard format 
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Two elements above may appear unusual.  These are the delay element and the real zero with a complex-
valued continuous-time zero.  To understand why we have such elements, let us re-write the passed 
numerator and denominator in a form that uses only standard QFT Toolbox elements (Table 5: Standard 
discrete-time elements in this Toolbox) 
 

z(z + 0.5)
(z - 0.2)(z - 0.3)(z - 0.7)

1

z

z
1

z + 0.5
0.5z

 0.8z
z - 0.2

 0.7 z
z - 0.3

 0.3z
z - 0.7

1
z

z + 0.5
0.5z

 0.8z
z - 0.2

 0.7 z
z - 0.3

 0.3z
z - 0.7

2=
× ×

× × × × ×

= × × × × ×

15
0 8 0 7 0 3

8 929

.
. . .

.

 

The non-unity gain element is required to compensate for forcing each standard element to have unity 
steady-state gain at z = 1.  The z and z-1 elements are often used for padding purposes.  The real discrete-
time zero at  z = 0.5 corresponds (via z-transform pair) to a single continuous-time complex pole p = 69-
314i.
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Functions by Class 
 
This section contains detailed descriptions of all QFT Toolbox functions.  It begins with a list of the 
functions grouped by subject area and continues with the reference entries in alphabetical order.  
Information is also available through the online help facility. 
 

Interactive Design Environments (IDE) 
lpshape Controller design 
pfshape Pre-filter design 

 
Specialized X-Y Graphs 

plotbnds Nichols plot of bounds 
plottmpl Nichols plot of templates 

 
Arithmetic 

addtmpl Add LTI/FRD arrays 
cltmpl Closed-loop LTI/FRD arrays from open-loop arrays 
multmpl Multiply LTI/FRD arrays 

 
Bound Computation 

sisobnds Single-Input/Single-Output setting bounds 
genbnds General setting bounds 

 
Bound Utility 

grpbnds Group several bounds into a single variable 
sectbnds Intersection of bounds 

 
Analysis 

chksiso Analysis of a SISO closed-loop configuration given 
open-loop LTI/FRD  models 

chkgen Analysis of a general closed-loop configuration given 
open-loop LTI/FRD models 

 
File Operation 

putqft Import a design into an IDE file 
getqft Export a design from an IDE file 

 
Examples 

qftex# Solutions to the examples in Chapter 5 
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addtmpl 
 
Purpose 
 
Add LTI and/or FRD arrays. 
 
Synopsis 
 
P = addtmpl(P1,P2,utype) 
 
Description 
 
addtmpl produces an addition of two SISO objects or arrays (LTI and/or FRD models).  If one is an FRD, 
the result is an FRD model. 
 
utype = 1 indicates correlated uncertainties (default) and utype = 2 indicates uncorrelated 
uncertainties. In an uncorrelated case, each element in one array is matched with all the elements in the 
other array.  When the dimensions of the arrays are the same, say n (note: array dimensions are not I/O 
dimensions), P1+P2 produces the same result as addtmpl(P1,P2,1) ― an object of array dimension n.  
addtmpl(P1,P2,2) produces an object of array dimension n2.  If the array dimensions are different, an 
uncorrelated case is assumed. 
 
addtmpl works with both continuous and discrete systems (both systems must have the same sampling 
time). 
 
Examples 
 
Consider addition of two transfer function sets given by 
 

( ) [ ]1
1 , 1,10P s a

s a
= ∈

+
    ( ) [ ]2 , 0.1,0.5

2
bP s b

s
= ∈

+
 

 
We first form LTI arrays to represent the above models using linear parameter space grids 
 

c = 1;  
for a = linspace(1,10,10),     
 P1(1,1,c) = tf(1,[1,a]);  c = c + 1; 
end 

 
c = 1;  
for b = linspace(0.1,0.5,10),  
 P2(1,1,c) = tf(1,[1,2]);  c = c + 1; 
end 

 
The addition is computed from 
 

P = addtmpl(P1,P2,2); 
 
Due to uncorrelated uncertainties, the array dimension of the sum is 
 

>> size(P1) 

10x1 array of transfer functions 

Each model has 1 output and 1 input. 
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>> size(P2) 

10x1 array of transfer functions 

Each model has 1 output and 1 input. 

 

>> size(P) 

100x1 array of transfer functions 

Each model has 1 output and 1 input. 
 
Note that using either 
 

P = P1+P2; 

 
or 
 

P = addtmpl(P1,P2); 

 
results in an erroneous addition since both assume correlated uncertainties (thought the results are 
different in that different elements are paired in the summation). 
 
See Also 
 
cltmpl, multmpl
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chkgen 
 
Purpose 
 
Analysis of a general closed-loop configuration given open-loop LTI and/or FRD models 
 
Synopsis 
 
chkgen(ptype,w,Ws,A,B,C,D,G) 
err = chkgen(ptype,w,Ws,A,B,C,D,G) 
 
Description 
 
chkgen plots at each frequency the maximal magnitude of a specified closed-loop design with respect to 
uncertainties.  This function is used in multivariable control design settings. 
 
A, B, C, D, and G are LTI/FRD objects or arrays; Ws, a weight, can be a single number, vector or an LTI or 
FRD model; w is a frequency vector (rad/sec; must be a subset of the frequencies in an FRD model). 
 
The argument ptype defines the particular closed-loop I/O problem of interest as shown in the table 
below 
 

ptype I/O Problem 
 

10 s
A BG W
C DG

+
≤

+
 

 
11 s

A B G
W

C DG
+

≤
+

 

 
err = chkgen(ptype,w,Ws,P,R,G,H,F) returns the difference between the closed-loop specification Ws, 
and the worst case (maximum) closed-loop configuration designated by ptype.  In particular, the error is 
given by 
 

max| |
all T

serr W T= −  

 
where T denoted the I/O system, defined by ptype. 
 
Upon invoking chkgen without an output argument, the result is displayed in a standard MATLAB figure 
window.   
 
chkgen works with both continuous and discrete systems.   
 
Limitations 
 
1. The function does not analyze (robust) stability.  It simply computes closed-loop magnitudes at the 

boundary of the template (hence, it is possible that 1+L = 0 for some interior point of the template at 
some frequency).  That is, only an algebraic test is performed. 

2. It is possible that during nominal loop shaping you located the loop right on the bound at a certain 
frequency, yet chkgen shows that you did not satisfy the specification at that frequency.  The reason 
is that the bound between any two adjacent phases is interpolated using a straight line.  If the 
resolution of the phase vector used to compute the bound was too “crude,” you cannot achieve a 
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reasonable approximation of the actual continuous bound curve.  To resolve this problem you must 
increase the resolution of the phase vector. 

 
See Also 
 
chksiso 
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chksiso 
 
Purpose 
 
Analysis of a single-input/single-output closed-loop design given open-loop LTI and/or FRD models 
 
Synopsis 
 
chksiso(ptype,w,Ws,P,R,G,H,F) 
err = chksiso(ptype,w,Ws,P) 
err = chksiso(ptype,w,Ws,P,R,G,H,F) 
 
Description 
 
chksiso plots at each frequency the maximal magnitude of a specified closed-loop design with respect to 
uncertainties.  P, G, H and F are LTI/FRD objects, Ws, a weight, can be a single number, vector or an 
LTI/FRD model; w is a frequency vector (rad/sec; must be a subset of the frequencies in an FRD model).  
R, a magnitude vector or an LTI/FRD model, denotes multiplicative uncertainty disk radius with respect 
to the plant P. 
 
The argument ptype defines the particular closed-loop I/O problem of interest as shown in the table 
below 
 

ptype I/O Problem 
 

1 11
PGHF Ws

PGH
≤

+
 

 
2 2

1
1

F Ws
PGH

≤
+

 

 
3 31

PF Ws
PGH

≤
+

 

 
4 41

GF Ws
PGH

≤
+

 

 
5 51

GHF Ws
PGH

≤
+

 

 
6 61

PGF Ws
PGH

≤
+

 

 
7 7 71a b

PGWs F Ws
PGH

≤ ≤
+

 

 
8 81

HF Ws
PGH

≤
+

 

 
9 91

PHF Ws
PGH

≤
+

 

 
Arguments Defaults 
P,G,H,F 1 
R 0 
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err = chksiso(ptype,w,Ws,P,R,G,H,F) returns the difference between the closed-loop specification, 
Ws, and the worst case (maximum) closed-loop configuration designated by ptype and uses the necessary 
default values.  In particular, the error is computed at each frequency from 
 

( ) ( ) ( )min( | |)ω = ω − ω
all T

err Ws T  

 
where T is the (uncertain) closed-loop transfer function (defined by ptype) and Ws is the specification. 
 
If the problem involves different performance specification for each plant in the uncertain set, the above 
err is computed for each such plant-spec pair, and the plot shows the minimum (at each frequency) over 
all such err values.  See Example 6: Missile Stabilization for an instance of such performance problem. 
 
Upon invoking chksiso without an output argument, the result is displayed in a standard MATLAB 
figure window.   
 
chksiso works with both continuous and discrete systems.   
 
Limitations 
 
1. The function does not check whether the family of closed-loop systems is (robustly) stable.  It simply 

computes closed-loop magnitudes at the boundary of the template (hence, it is possible that 1+L = 0 
(L is the open-loop function) for some interior point of the template at some frequency).  That is, only 
an algebraic test is performed. 

 
2. It is possible that during nominal loop shaping you located the loop right on the bound at a certain 

frequency, yet the output of chksiso shows that you did not satisfy the specification at that 
frequency.  The reason is that the bound between any two adjacent phases is interpolated using a 
straight line.  If the resolution of the phase vector used to compute the bound was too “crude,” you 
cannot achieve a reasonable approximation of the actual continuous bound curve.  To resolve this 
problem you must increase the resolution of the phase vector. 

 
Examples 
 
Suppose you wish to analyze a feedback design where the uncertain plant is 
 

( ) : [1,10]
( 5)( 30)

P kP s k
s s

 
= = = + + 

 

 
the controller is 
 

( )
( )

42

165

379 +1
( )

+1

s

s
G s =  

 
and the performance specification is  
 

( ) 1.2, 0,  for all  
1

PPG j P
PG

ω ≤ ω≥ ∈
+

 

 
Define the open-loop data  
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c = 1;  
for k = linspace(1,10,10),    
 P(1,1,c) = tf(k,conv([1,5],[1,30]));  c = c + 1; 
end 
G = tf(379*[1/42,1],[1/165,1]); 

 
and a frequency vector 
 

w = logspace(-1,3,100); 
 
The desired analysis is obtained by invoking 
 

chksiso(1,w,1.2,P,0,G); 
 
Alternatively, we can compute the maximal magnitude response at each frequency using  the following 
 

Trw = abs(freqresp(Tr,w)); 
Trmag = abs(squeeze(freqresp(Tr,w))); 
maxT = max(Trmag,[],2); 

 
A similar procedure applies in a discrete-time setting.  Suppose we want to check the performance of the 
above system in a discrete-time implementation with a 0.01 second sampling time.  The discretized open-
loop data can be computed from 
 

Ts = 0.01; 
Pz = c2d(P,Ts,'foh'); 
Gz = c2d(G,Ts,'foh'); 

 
The frequency vector is defined up to the Nyquist frequency 
 

wz = logspace(-1,log10(pi/Ts),100); 
 
Analysis is obtained from 
 

chksiso(1,wz,1.2,Pz,0,Gz);  
 
See Also 
 
chkgen 
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cltmpl 
 
Purpose 
 
Closed-loop arrays from open-loop arrays 
 
Synopsis 
 
cl = cltmpl(ptype,P,G,H,F,sgn,utype) 
 
Description 
 
clcp forms the correlated or uncorrelated closed-loop system designated by ptype that defines the 
particular closed-loop relation of interest as shown in the table below 
 

ptype I/O relation ptype I/O relation ptype I/O relation 
1 PGHF

PGH
⋅

+1
 4 GF

PGH
⋅

+1
 7 PGF

PGH
⋅

+1
 

2 F
PGH

⋅
+
1

1
 5 GHF

PGH
⋅

+1
 8 HF

PGH
⋅

+1
 

3 PF
PGH

⋅
+1

 6 PGF
PGH

⋅
+1

 9 PHF
PGH

⋅
+1

 

 
sgn = 1 specifies positive feedback and sgn = -1 specifies negative feedback (default). 
 
utype = 1 indicates correlated uncertainties (default) and utype = 1 indicates uncorrelated 
uncertainties. In an uncorrelated case, each element in one array is matched with all the elements in the 
other array.  If array dimensions are different, an uncorrelated case is assumed. 
 

Arguments Default Values 
P,G,H,F 1+0i 
sgn -1 
utype 1 

 
P, G, H and F are LTI and/or FRD models.  If mixed models are used, the result is an FRD model. 
 

cltmpl works with both continuous and discrete systems (all systems must have the same sampling time). 
 
cl = cltmpl(ptype,P,G,[],[],[],utype) computes the closed-loop LTI/FRD model designated by 
ptype from P and G data. 
 
Examples 
 
Compute the closed-loop tracking frequency response set  
 

( ) ( )
1+ ( ) ( )

P s G s
P s G s

 

 
corresponding to: 
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1( ) , ( ) , [1,10]
2

aP s G s a
s a s

= = ∈
+ +

 

 
We first form LTI arrays to represent the above models using linear parameter space grids 
 
 

c = 1;  
for a = linspace(1,10,10), 
 P(1,1,c) = tf(1,[1,a]);   
 G(1,1,c) = tf(a,[1,2]);   
 c = c + 1; 
end 

 
The result is computed from 
 

T = cltmpl(1,P,G); 
 
Due to uncorrelated uncertainties, the array dimension of the sum is 
 

>> size(P) 

10x1 array of transfer functions 

Each model has 1 output and 1 input. 

 

>> size(P) 

10x1 array of transfer functions 

Each model has 1 output and 1 input. 

 

>> size(T) 

10x1 array of transfer functions 

Each model has 1 output and 1 input. 
 
 
Note that if we let the uncertainties be uncorrelated (clearly not the case here) 
 

T = cltmpl(1,P,G,[],[],[],2); 
 
resulting in a 10x10 array dimension 
 

>> size(T) 

100x1 array of transfer functions 

Each model has 1 output and 1 input. 
 
The frequency response of this array is computed using a Control Toolbox command 
 

w = logspace(-1,1); 

Tfr = freqresp(T,w); 

 
Note that the result is NOT an LTI model, rather a multi-dimensional matrix 
 

>> size(Tfr) 

ans = 

     1     1    50   100. 
 
In SISO cases (the first two indices correspond to input and output dimensions), it is convenient to 
eliminate the singleton dimensions 
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Tfr = squeeze(freqresp(T,w)); 

>> size(Tfr) 

ans = 

     50   100. 
 
The result can be made a FRD model using 
 

Tfr = frd(Tfr,w); 

>> get(Tfr) 

      Frequency: [50x1 double]       

   ResponseData: [1x1x50x100 double] 

          Units: 'rad/s'             

             Ts: 0                   

        ioDelay: 0                   

     InputDelay: 0                   

    OutputDelay: 0                   

      InputName: {''}                

     OutputName: {''}                

     InputGroup: {0x2 cell}          

    OutputGroup: {0x2 cell}          

          Notes: {}                  

       UserData: []                  

 
See Also 
 
addtmpl, multmpl 
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genbnds 
 
Purpose 
 
Compute QFT bounds 
 
Synopsis 
 
bdb = genbnds(ptype,w,Ws,A,B,C,D,P0,phs) 
 
Description 
 
genbnds computes QFT bounds on the nominal loop, 0 0L P G= , for the generic problem specified by 
ptype (G is the controller, 0P  is the nominal plant) as shown in the table below. 
 

ptype I/O relation 
 

10 10s
A BG W
C DG

+
≤

+
 

 
11 11s

A B G
W

C DG
+

≤
+

 

 
A, B, C, D, and P0 can be constants or LTI/FRD models.  Ws, a weight, can be a single number, vector or an 
LTI model; w is a frequency vector (rad/sec; must be a subset of the frequencies in an FRD model).  The 
only default here is phs = [0°:-5°:-360°]. 
 
 
genbnds works for both continuous and discrete systems. 
 
When invoked without a left-hand argument, genbnds displays the computed bounds. 
 
For further details, refer to the Using the Bound Computation Manager section in Chapter 6. 
 
Examples 
 
Consider a unity feedback system with the uncertain plant described by 
 

{ }1( ) , [1,10]P P s a
s a

= = ∈
+

 

 
The desired closed-loop stability margin is given by 
 

( ) 1.2, 0,  for all  
1

PPG j P
PG

ω ≤ ω ≥ ∈
+

 

 
First, define problem data 
 

c = 1;  
for a = linspace(1,10,25), 
 P(1,1,c) = tf(1,[1,a]);   
 c = c + 1; 
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end 
 

A = 0; 
B = P; 
C = 1; 
D= = P; 
inom = 1 % nominal case 

 
finally, invoke 

w = [0.1,1,10,100];  % bounds will be computed at these freqs 
P0 = P(1,1,inom); 
bdb = genbnds(10,w,1.2,A,B,C,D,P0) 

 
Use of this function is illustrated in Examples 7 and 8 (cascaded-loop) and Example 15 (multi-loop), all in 
Chapter 5. 
 
See Also 
 
grpbnds, plotbnds, sectbnds, sisobnds 
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getqft 
 
Purpose 
 
Export  a QFT design as an LTI model. 
 
Synopsis 
 
C = getqft 
C = getqft('filename') 
 
Description 
 
getqft opens a file selection dialog box that allows selection of a binary file created using the File|Save... 
option within any of the interactive design environment (IDE) functions. 
 
C = getqft opens a file selection dialog box and returns the contents of the selected file with C being an 
LTI model. 
 
[...] = getqft('filename') directly opens the file specified by  filename. 
 
The default IDE extensions are shown in the following table.  (these choices are not unique, any other 
extension can be used).  
 

Design Environment File Extension 
lpshape *.shp 

pfshape *.fsh 

 
getqft works for both continuous and discrete systems. 
 
Algorithm 
 
The returned model is in a balanced state-space form implementation of the algorithm described in [20]. 
 
Limitations 
 
The balanced state-space form is not available in discrete-time systems or if there are imaginary axis or 
unstable poles.  Repeated poles may cause numerical difficulties. 
 
See Also 
 
lpshape, pfshape, putqft
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grpbnds 
 
Purpose 
 
Group several bounds into a single variable 
 
Synopsis 
 
bdb = grpbnds(var1,var2,...) 
 
Description 
 
grpbnds assigns the passed bounds to a single matrix.  Its purpose is to reduce the number of input 
variables in functions requiring bounds. 
 
Examples 
 
Suppose you have computed the following bounds 
 

bdb1 = sisobnds(1,w,Ws1,P); 
bdb5 = sisobnds(5,w,Ws5,P); 

 
then to group them, invoke 
 

bdb = grpbnds(bdb1,bdb5); 
 
See Also 
 
plotbnds, sectbnds
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lpshape 
 
Purpose 
 
Interactive environment continuous-time controller design in a Nichols chart format 
 
Synopsis 
 
lpshape() 
lpshape(C0) 
lpshape(w,bdb,P0,C0,phs) 
 
Description 
 
lpshape creates within MATLAB an interactive design environment (IDE) that allows use of either the 
mouse or keyboard to add specific controller elements in order to manipulate the frequency response. 
 
Depending on the input arguments, the IDE is initiated in a continuous-time or a discrete-time setting. 
 
w is a frequency vector (rad/sec), bdb denoted a QFT bound matrix, P0 (the nominal loop) and G0 (initial 
controller) are LTI/FRD models, w is a frequency vector (rad/sec; must be a subset of the frequencies in 
an FRD model).and phs is the phase used to compute bdb. 
 
Upon entry, the nominal loop, 0L , is the product of the nominal plant and initial controller 
 

0 0 0L P G=  
 

Arguments Default Values 
w* logspace(-2,3,100) in continuous-time setting 

logspace(-2,log10(π/Ts),100) in discrete-time setting 
P0,C0 1 
phs* [0:-5:-360] 

 
lpshape(w,[],P0) initiates an IDE with user-specified nominal loop transfer function and frequency 
vector.  No bounds are passed and the remaining inputs are set to their respective defaults as outlined in 
the above table. 
 
For details on the interactive design environment, refer to The Interactive Design Environment section in 
Chapter 6. 
 
Examples 
 
Suppose you wish to loop-shape a controller for a continuous-time feedback system with the uncertain 
plant 
 

( ){ }, [.1,.8]P sP s a
s a

= = ∈
+

 

 
and a desired closed-loop stability margin is given by 
 

( ) 1.2, 0,  for all  
1

PPG j P
PG

ω ≤ ω≥ ∈
+
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First, define problem data 

 
Ts = 0.01; 
c = 1;  
for a = linspace(0.1,0.8,25), 
 P(1,1,c) = tf(1,[1,-a]);   
 c = c + 1; 
end 
P.Ts = Ts; 
 

then compute bounds 
 
wbd = [0.1,1,10,100]; 
Ws = 1.2; 
bdb1 = sisobnds(1,wbd,Ws,P); 

 
and finally, initiate loop-shaping environment 
 

nom = 1; 
w = logspace(-1,log10(pi/Ts)); 
lpshape(wl,bdb1,P0(1,1,nom)) 

 
In addition, see Examples 1-10 in Chapter 5. 
 
Suppose you wish to loop-shape a controller for a discrete-time feedback system (sampling time Ts=0.01 
sec) with the uncertain plant 
 

( ){ }, [.1,.8]P zP z a
z a

= = ∈
−

 

 
and a desired closed-loop stability margin is given by 
 

( ) ( )
( ) ( )

1.2 , , 0, , for all  
1

Ps
s

j T
T

P z G z
z e P

P z G z
ω π ≤ = ω∈ ∈  +

. 

 
First, define problem data 

 
Ts = 0.01; 
c = 1;  
for a = linspace(0.1,0.8,25), 
 P(1,1,c) = tf(1,[1,-a]);   
 c = c + 1; 
end 
P.Ts = Ts; 
 

then compute bounds 
 
w = [0.1,1,10,100]; 
Ws = 1.2; 
bdb1 = sisobnds(1,w,Ws,P); 

 
and finally, initiate loop-shaping environment 
 

nom = 1; 
w = logspace(-1,log10(pi/Ts)); 
lpshape(wl,bdb1,P0(1,1,nom)) 

 
See example files qftex12.m and qftex13.m. 
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See Also 
 
pfshape 
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multmpl 
 
Purpose 
 
Multiply LTI and/or FRD arrays. 
 
Synopsis 
 
P = multmpl(P1,P2,utype) 
 
Description 
 
multmpl produces the product of two SISO objects or arrays (LTI and/or FRD).  If one is an FRD, the 
result is an FRD model. 
 
utype = 1 indicates correlated uncertainties (default) and utype = 2 indicates uncorrelated 
uncertainties. In an uncorrelated case, each element in one array is matched with all the elements in the 
other array.  When the dimensions of the arrays are the same, say n (note: array dimensions are not I/O 
dimensions), P1*P2 produces the same result as multmpl(P1,P2,1) ― an object of array dimension n.  
multmpl(P1,P2,2) produces an object of array dimension n2.  If the array dimensions are different, an 
uncorrelated case is assumed. 
 
multmpl works with both continuous and discrete systems (both systems must have the same sampling 
time). 
 
Examples 
 
Consider product of two transfer function sets given by 
 

( ) [ ]1
1 , 1,10P s a

s a
= ∈

+
    ( ) [ ]2 , 0.1,0.5

2
bP s b

s
= ∈

+
 

 
We first form LTI arrays to represent the above models using linear parameter space grids 
 

c = 1;  
for a = linspace(1,10,10),    % use a 10-point grid 
 P1(1,1,c) = tf(1,[1,a]);  c = c + 1; 
end 

 
c = 1;  
for b = linspace(0.1,0.5,10), % use a 10-point grid 
 P2(1,1,c) = tf(1,[1,2]);  c = c + 1; 
end 

 
The addition is computed from 
 

P = multmpl(P1,P2,2); 
 
Due to uncorrelated uncertainties, the array dimension of the sum is 
 

>> size(P1) 

10x1 array of transfer functions 

Each model has 1 output and 1 input. 
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>> size(P2) 

10x1 array of transfer functions 

Each model has 1 output and 1 input. 

 

>> size(P) 

100x1 array of transfer functions 

Each model has 1 output and 1 input. 
 
Note that using either 
 

P = P1*P2; 

 
or 
 

P = multmpl(P1,P2); 

 
results in an erroneous addition since both assume correlated uncertainties (thought the results are 
different in that different elements are paired in the summation). 
 
See Also 
 
addtmpl, cltmpl



pfshape 

QFT Frequency Domain Control Design Toolbox User’s Guide  7-22 

pfshape 
 
Purpose 
 
Interactive design environment (IDE) for design of a pre-filter for a specified closed-loop I/O 
configuration. 
 
Synopsis 
 
pfshape(ptype,w,Ws,P,R,G,H,F0) 
 
Description 
 
pfshape creates within MATLAB a pre-filter interactive design environment that allows use of either the 
mouse or keyboard to add specific elements. 
 
Depending on the input arguments, the IDE is initiated in a continuous-time or a discrete-time setting. 
 
The argument ptype defines the particular closed-loop I/O relation of interest as shown in the table below 
 

ptype I/O relation ptype I/O relation ptype I/O relation 
1 

1
PGHF

PGH
⋅

+
 4 

1
GF
PGH

⋅
+

 7 
1

PGF
PGH

⋅
+

 

2 1
1

F
PGH

⋅
+

 5 
1

GHF
PGH

⋅
+

 8 
1

HF
PGH

⋅
+

 

3 
1

PF
PGH

⋅
+

 6 
1

PGF
PGH

⋅
+

 9 
1

PHF
PGH

⋅
+

 

 
The systems P, G, H and R are LTI/FRD models or constants.  w is a frequency vector to be used for 
displaying the responses.  Ws, a weight, can be a single number, vector or an LTI/FRD model; w is a 
frequency vector (rad/sec; must be a subset of the frequencies in an FRD model).  R denotes multiplicative 
uncertainty disk radius with respect to the plant P. 
 

Arguments Default Values 
P,G,H,F0 1 
R 0 

 
pfshape opens graph window showing the Bode magnitude (dB) vs. frequency plot.  The maximum 
magnitude of the closed-loop I/O relation is drawn with a solid line and |Ws| is drawn with a dashed line.  
For ptype = 7, both minimum and maximum magnitudes of the I/O relation are shown as well as both 
upper and lower weights of Ws as in sisobnds(7,...) (Ws is a 2-row magnitude matrix or a 2-model 
LTI/FRD object).  For more details on this interactive design environment, refer to The Interactive Design 
Environment section in Chapter 6. 
 
Examples 
 
Suppose you wish to design pre-filter for a tracking problem with an uncertain plant  
 

( ) : [1,10]
( 5)( 30)

P kP s k
s s

 
= = = + + 
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and the controller 
 

( )
( )

( )
42

152

379 1

1

s

s
G s

+
=

+
 

 
such that  
 

1.2,  for all  
1

PPGF P
PG

⋅ ≤ ∈
+

 

Define input data 
 

c = 1;  
for k = linspace(1,10,15), 
 P(1,1,c) = tf(k,conv([1,5],[1,30]));   
 c = c + 1; 
end 
 
G = tf(379*[1/42,1],[1/152,1]); 

 
Then initiate the pre-filter design environment by invoking 
 

pfshape(1,w,1.2,P,0,G) 
 
In addition, see Example 2 and 9 in Chapter 5. 
 
Suppose you wish to design s pre-filter for a tracking problem with sampling time of 1 second and an 
uncertain plant  
 

( 0.9672)( ) : [0.01,0.05]
( 1)( 0.9048)

P k zP z k
z z

 +
= = ∈ 

− − 
 

 
and the controller 
 

12.8( 0.883)G( )
0.5
-zz

z
=

+
 

 
such that  

 

1.2, , 0, , for all  
1

Ps
s

j T
T

PGF z e P
PG

ω π ⋅ ≤ = ω∈ ∈  +
 

 
Define input data 
 

Ts = 1; 
c = 1;  
for k = linspace(0.01,0.05,15), 
 P(1,1,c) = tf(k*[1,0.9672],conv([1,-1],[1,-0.9048]));   
 c = c + 1; 
end 
P.Ts = Ts; 
 
G = tf(12.8*[1,-0.883],[1,0.5]); 
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G.Ts = Ts; 
 
Then initiate the pre-filter design environment by invoking 
 

pfshape(1,w,1.2,P,0,G) 
 
Another example can be found in Example 13 in Chapter 5. 
 
See Also 
 
lpshape, getqft
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plotbnds 
 
Purpose 
 
Plot QFT bounds 
 
Synopsis 
 
plotbnds(bdb) 
plotbnds(bdb,problem,phs) 
 
Description 
 
plotbnds plots the bound vector returned by sisobnds and genbnds with a legend in the upper left-hand 
corner of the figure window designating which bound was computed at which frequency. 
 
plotbnds(bdb) plots the bounds in bdb using the defaults as shown in the above table. 
 
plotbnds(bdb,problem) plots only the bounds associated with the passed types in problem. 
 
plotbnds(bdb,[],phs) all the bounds in bdb with their corresponding phase vector, phs.  This phase 
vector is the same that was used to compute the bounds using sisobnds or genbnds.  Default value is phs 
= [0:-5:-360] 
 
You can on/off toggle showing bounds by right-clicking the mouse and selecting options on the displayed 
window. 
 
See Also 
 
grpbnds, sectbnds
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plottmpl 
 
Purpose 
 
Plot plant templates 
 
Synopsis 
 
plottmpl(w,P,nom) 
 
Description 
 
plottmpl plots the frequency-response templates and labels the nominal plant with an (*).  P is an 
LTI/FRD array.  w is a frequency vector (rad/sec; must be a subset of the frequencies in an FRD model). 
 
plottmpl(w,wbd,P) plots the frequency response templates of P at the frequencies designated by w.  The 
nominal plant index, nom, defaults to 1. 
 
plottmpl(w,[],P,10) plots the frequency-response templates at all the frequencies with the 10th plant 
labeled as the nominal plant. 
 
plottmpl works for both continuous and discrete systems.   
 
The displayed bounds can be toggled on/off right-clicking the mouse and selecting options on the 
displayed window. 
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putqft 
 
Purpose 
 
Import controllers into the interactive design environment binary file format 
 
Synopsis 
 
putqft(Ts,C) 
putqft('filename',Ts,...) 
 
Description 
 
putqft(Ts,C) opens a file selection dialog box and places the contents of the LTI model into the chosen 
binary file that can then opened by an interactive design environment (IDE).  Ts denotes sampling time 
(seconds) and C denotes the controller. 
 
putqft('filename',Ts,...) directly places the contents of the specific format into the filename which 
can then be opened by an interactive design environment. 
 
An IDE file is essentially a zero/pole/gain description.  For large order numerator/denominator or state-
space forms, the conversion to zero/pole/gain format is suspect to numerical inaccuracies. 
 
The interactive design environments are configured to search for files with the following extensions 
(though you can specify any file name): 
 

Design Environment File Extension 
lpshape *.shp 

pfshape *.fsh 

 
See Also 
 
getqft, lpshape, pfshape 
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qftex# 
 
Purpose 
 
Batch files for the Toolbox demo examples 
 
Synopsis 
 
qftex# 
 
Description 
 
# can be any number from 1 to 15, each corresponds to an example # from chapter 5.  These files are 
standard batch M-files.   
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sectbnds 
 
Purpose 
 
Intersect QFT bounds 
 
Synopsis 
 
ubdb = sectbnds(bdb) 
 
Description 
 
sectbnds performs set intersection on the bounds computed from sisobnds and genbnds.  It also 
determines when the result is empty or a non connected set. 
 
ubdb = sectbnds(bdb) returns the intersection of the bounds contained in bdb. 
 
For a complete discussion on bounds please refer to The Bound Computation Managers. 
 
Examples 
 
Suppose you wish to design a controller for an uncertain plant  
 

( ) : [1,10]
( )( 30)

P P s k
s a s

 
= = = + + 

1  

 
 

with peaking constraints 
 

1.2,  for all  
1

PPG P
PG

≤ ∈
+

 

 
and 
 

1 1.2,  for all  
1

PP
PG

≤ ∈
+

. 

 
 
We first form an LTI array to represent the above model using a linear parameter space grid 
 

c = 1;  
for a = linspace(1,10,15), 
 P(1,1,c) = tf(1,conv([1,a],[1,30]));   
 c = c + 1; 
end 

 
To compute the corresponding bounds at low and high frequencies run 
 

w = [1,100]; 
bdb1 = sisobnds(1,w,1.2,P); 
bdb2 = sisobnds(2,w,1.2,P); 
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and grouped them  
 

bdb = grpbnds(bdb1,bdb2); 
 
then the intersection is computed by invoking 
 

ubdb = sectbnds(bdb); 
 
To evaluate the result we plot the bounds before and after the intersection 
 

plotbnds(bdb) 

plotbnds(ubdb) 

 
See Also 
 
genbnds, grpbnds, plotbnds, sisobnds 
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sisobnds 
 
Purpose 
 
Compute single-input/single-output bounds 
 
Synopsis 
 
bdb = sisobnds(ptype,w,Ws,P) 
bdb = sisobnds(ptype,w,Ws,P,R,nom,C,loc,phs) 
 
Description 
 
sisobnds computes single-input/single-output QFT bounds for the feedback system shown below 
 
 
 
 
 
 
 
 
 
 
 
 
In terms of the nominal loop, 0 0 0 0L L G H= . The performance problem is specified in ptype (see below). 
 

ptype I/O Problem 
 

1 11
PGH Ws

PGH
≤

+
 

 
2 2

1
1

Ws
PGH

≤
+

 

 
3 31

P Ws
PGH

≤
+

 

 
4 41

G Ws
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≤
+

 

 
5 51

GH Ws
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≤
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PG Ws
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≤
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7 7 71a b
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Arguments Defaults 
P,G,H 1 
R 0 
nom 1 
loc 1 
phs [0°:-5°:-360°] 

 
P and C and R can also be represented by LTI/FRD models. Ws, a weight, can be a single number, vector 
or an LTI/FRD model; w is a frequency vector (rad/sec; must be a subset of the frequencies in an FRD 
model), the integer nom contains nominal plant index in an LTI/FRD array, the integer loc defines the 
controller location in the loop and w is a vector defining the resolution of the computed bounds along the 
phase axis.   
  
For more details, please see Single Loop Bound Manager. 
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loc defines the controller location: loc = 1 implies it is at G(s) (i.e., forward path) while loc = 2 
implies it is at H(s) (i.e., feedback path). 
 
 
When invoked without a left-hand argument, sisobnds displays the computed bounds. 
 
sisobnds works for both continuous and discrete systems. 
 
For further details, refer to The Bound Computation Managers. 
 
Examples 
 
Consider a unity feedback system with the uncertain plant described by 
 

( ){ }1 : [1,10]P P s a
s a

= = ∈
+

 

 
The desired closed-loop stability margin is given by 
 

( ) 1.2, 0, for all 
1

PPG j P
PG

ω ≤ ω ≥ ∈
+

. 

 
The above peaking constraint corresponds a phase margin of 50o and a gain margin of 1.83. 
 
We first form an LTI array to represent the above model using a linear parameter space grid 
 

c = 1;  
for a = linspace(1,10,15), 
 P(1,1,c) = tf(1,[1,a]);   
 c = c + 1; 
end 

 
The desired QFT bounds corresponding to the above constraint are computed from 
 

Ws = 1.2; 
w = [0,01,1,100]; 
bdb1 = sisobnds(1,w,Ws,P); 

 
and are displayed using 
 

plotbnds(bdb1); 
 
In a discrete-time system, suppose the plant is described by (sampling time Ts=0.01 sec)  
 

( ){ }, [.1,.8]P zP z a
z a

= = ∈
−

 

 
and a desired closed-loop stability margin is given by 
 

( ) ( )
( ) ( )

1.2 , , 0, , for all  
1

Ps
s

j T
T

P z G z
z e P

P z G z
ω π ≤ = ω∈ ∈  +

. 

 
We first form an LTI array to represent the above model using a linear parameter space grid 
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Ts = 0.01; 
c = 1;  
for a = linspace(0.1,0.8,25), 
 P(1,1,c) = tf(1,[1,-a]);   
 c = c + 1; 
end 
P.Ts = Ts; 

 
compute bounds using 

 
w = [0.1,1,10,100]; 
Ws = 1.2; 
bdb1 = sisobnds(1,w,Ws,P); 

 
which can be displayed using 
 

plotbnds(bdb1); 
 
An interesting problem is the traditional QFT tracking setting: a unity feedback system with the uncertain 
plant described by 
 

( )
( )

: [1,10], [1,15]P kaP s k a
s s a

  = = ∈ ∈ 
+  

 

 
with desired tracking (i.e., complimentary sensitivity function ) from R(s) to Y(s) given by 
 

( ) ( ) ( )1 2 10, for all 
1

, Ps s
PGW j F j W j P

PG
ω ≤ ω ≤ ω ω ≤ ∈

+
  

 
where 
 

( )1 2
0.6584( 30)

4 19.752s
sW s

s s
+

=
+ +

    and    . ( )2 3 2
120

17 82 120sW s
s s s

=
+ + +

 

 
Solving this problem involves two steps.  In the first step we compute bounds for the controller G(s), then 
loop-shape it.  In the second step we shape a pre-filter, F(s).  Let us first design the controller. 
 
We first form an LTI array to represent the above model using a linear parameter space grid 
 

c = 1;  
for a = linspace(1,15,15), 
for k = linspace(1,10,10), 
 P(1,1,c) = tf(k*a,[1,a,0]);   
 c = c + 1; 
end 

 
Define the weight 
 

Ws1 = tf(0.6584*[1,30],[1,4,19.752]);   
Ws2 = tf(120,[1,17,82,120]);   
Ws = [Ws1,Ws2];   
 

 
then compute tracking bounds 
 

w = [0.1,0.5,1,15]; 
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bdb7 = sisobnds(7,w,,Ws,P); 
 
Once a controller G(s) is designed using the loop shaping environment lpshape, say it is given by G, the 
feedback design is completed with the design of the pre-filter 
 

pfshape(7,w,Ws,P,G); 
 
A similar discrete-time design problem is described in Example 12. 
  
Algorithm 
 
An implementation of the algorithms described in [8,14,15,22]. 
 
See Also 
 
genbnds, grpbnds, plotbnds, sectbnds 
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A Glossary 
 
above bound  the minimum value of the gain of the nominal open-loop transfer function, at some fixed 
phase, such that a specific magnitude constraint on a closed-loop transfer function is algebraically 
satisfied. 
 
below bound  the maximum value of the gain of the nominal open-loop transfer function, at some 
fixed phase, such that a specific magnitude constraint on a closed-loop transfer function is algebraically 
satisfied. 
 
bound  the allowable range of the gain of the nominal open-loop transfer function, at some fixed phase, 
such that a specific magnitude constraint on a closed-loop transfer function is algebraically satisfied. 
 
loop shaping  the process of designing a nominal open-loop transfer function. 
 
Nichols chart  a frequency response plot with phase (degrees) and magnitude (dB) of the open-loop 
transfer function as its coordinates.  
 
Nominal plant  the designated plant for bound computation and open-loop shaping.  It is either: (1) the 
fixed plant when there are no uncertainties, (2) an arbitrarily selected plant from a family of parametric 
uncertain plant model, or (3) the central plant of a family of nonparametric uncertain plant model. 
 
robust stability  indicates that a closed-loop system is stable for any plant within the specified 
uncertainty model. 
 
robust performance  indicates that a closed-loop system satisfies its performance specification(s) for 
any plant within the specified uncertainty model. 
 
QFT  the Quantitative Feedback Theory method. 
 
stability margins  the amount of gain and phase variations in the open-loop transfer function that can 
be tolerated (not simultaneously) before a stable closed-loop system becomes unstable.  
 
templates  the collection, at a fixed frequency, of all frequency responses of an uncertain plant model. 
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