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Abstract

Reset controllers consist of two parts - a linear compensator and a reset element.
The linear compensator is designed, in the usual ways, to meet all closed-loop perfor-
mance specifications while relaxing the overshoot constraint. Then, the reset element
is chosen to meet this remaining step-response specification. In this paper, we con-
sider the case when such linear compensation results in a second-order (loop) transfer
function and where a first-order reset element (FORE) is employed. We analyze the
closed-loop reset control system addressing performance issues such as stability, steady-
state response and transient performance.
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1 Introduction

This paper' is one in a sequence [1]-[5] describing recent research on reset control systems.
While the original concept of reset elements and reset control design was introduced in the
late 50’s and early 70’s; see [6] and [7], it’s only now that we see broader interest and
application ([8], [9], [10]) as well as analytical study ([11], [12]).

The main purpose for introducing reset elements is to mitigate some of the tradeoffs
suffered by linear, time-invariant (LTT) feedback control systems. For instance, [13] presents
control specifications that cannot be met using linear control but achievable using reset.
Experimental work in [4] and [14] further confirm advantage while stability and asymptotic
performance analysis is conducted in [1], [4] and [5]. The present paper continues this
research by focusing on a special class of reset control system consisting of a first-order reset
element and second-order loop transfer function.

Reset controllers, as introduced in [6] and further developed by [7] and [14], consist of
two distinct parts — a linear compensator C'(s) and a reset element as shown in Figure 1.
A reset element is simply a linear filter whose output is reset to zero when the filter input
is zero. Special cases include the Clegg integrator [6] and the first-order reset element
(FORE) [7] used in this paper. Commensurate to their structure, design of a reset controller
proceeds in two steps. First, C(s) is synthesized to meet control system specifications, with
relaxed overshoot constraint, while the FORE is selected to meet this transient-response
specification. The linear design can result in a loop transfer function L(s) = P(s)C(s)
dominated by a complex pole pair — a situation that this paper concentrates. Our work
exploits this case and develops sharper results than made in [4] and [5]. For example, while
these more general papers give sufficient conditions for asymptotic stability, our new results
give a testable condition (see Section 3, Theorem 1) that is both necessary and sufficient.
Similarly, we give a stronger BIBO stability condition in Theorem 2 of Section 4. Finally, the
simpler setup considered here allows us to fully characterize the step response as summarized
in Theorems 3 and 4 of Section 5. They also allow us to draw comparison to classical linear
control systems described by second-order transfer functions m as discussed in
Section 6. Before getting to these results, we first introduce the dynamics of reset control
systems.

2 Dynamics of Reset Control

In this paper we focus on the reset control system in Figure 1 where the first-order reset
element (FORE) is described by the impulsive differential equation [12]:

B(t) = —bug(t) +elt); eft) #0
zp(tT) = 0; e(t) =0

LA preliminary version of this paper [3] was presented at the American Control Conference, Chicago, IL,
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Figure 1: Block diagram of the reset control system considered in this paper. The reset controller
consists of two parts: a linear compensator C(s) and a FORE reset element.

where z; is its state, e is the system error and b the FORE’s pole; see [7]. To avoid degener-
ation to an LTI system, we assume that the FORE continually resets. We collect these reset
times in the unbounded set

I:{tl|€(tz):0, ti >t;,1+ o0, O'>O, i:1,2,...,00}

where we assume that adjacent reset times are no closer than ¢. This assumption is techni-
cally motivated by a desire to have closed-loop solutions continuable over [0, oc), but is met
when FORE is digitally implemented and the sampling period is a lower bound to o.

A state-space description of the reset control system is:

[iﬁ‘g(t) == A[L‘g(t)—i‘B.’L‘f(t)
Tp(t) = —Cup(t) —bap(t)+r(t); t¢1
zp(tT) = 0; tel
y(t) = Cxy(t) (1)

where {A, B, C} denotes a minimal realization of L(s) with state z,(¢) € R". Let the closed-

loop state be
r = l s ] .
Ty

Given (z7(0),z,(0)), the solution to (1) is piecewise left-continuous on the intervals (¢;,t;41].
In the absence of resetting, (1) reduces to the following linear system:

{02 A+ |y |5 #0 =20 ®)
where
AT

In the sequel, we refer to (2) as the base-linear system. Furthermore, we will restrict our
attention to second-order loop transfer functions so that n = 2, z;, = [z, 24 and x(t) € R3.
Finally, without loss of generality, we assume C' = [0 1].
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3 Asymptotic Stability

For asymptotic stability, we consider (1) with r(¢) = 0. Between successive reset times
t; and t;,1, the closed-loop system behaves as the LTI system:

J?(t) = Aogib'(t), t e (ti, ti+1].

Therefore,
z(t) = e (1), t e (t, tisa]. (3)

By definition, the reset times ¢; are characterized by e(t;) = 0. Since y(t) = x4 (t), then at
each t; we have z45(t;) = 0 and x;(¢;") = 0. Therefore, (3) becomes

pir(t —t;)
z(t) = | pult —t) |zalt), t € (L tig] (4)
pa1(t — 1)

where p;;(t) denotes the (i, j)th entry of e?<!, the state transition matrix of the base-linear
system (2). Our first lemma characterizes some properties of (1).

Lemma 1: Assume r(t) = 0 and let 79 > 0 denote the smallest number for which
pa1(m0) = 0. Then, (1) enjoys the following properties:

1. tiyg—ti=m fori=1,2,...,00.
2. x(t +79) = p11(70)x(t) for all t > t,.

Proof: The reset time t;,4 is defined as the first time instant after ¢; for which x5 (t; 1) =
0. It follows from (4) that i) (ti—l—l) = P21 (ti—i—l - tz)xl(tl) = 0. The case ZL‘l(tz) = 0 is trivial.
So, assume x(t;) # 0. Therefore, ¢;,1 — t; is the smallest value such that pe; (t;41 — t;) = 0.
Hence, t;y1 — t; = 70. This proves the first claim. From (4), z1(tiyv1) = p11(70)z1(L;).
Substituting this back into (4) gives x(t + 70) = p11(70)x(t). O

Lemma 1 describes an important feature of the trajectory of a second-order reset control
system under zero input. Namely, the reset intervals ¢;,1 —t; are constant and the trajectories
over adjacent intervals are simply copies scaled by the factor p;1(79). This property will be
illustrated in Section 6. The following main result is now obvious.

Theorem 1: The reset control system (1) is asymptotically stable if and only if
|p11(T0)| < 1.



4 BIBO Stability

This section develops a sufficient condition for bounded-input, bounded-output (BIBO)
stability. The reset control system (1) is said to be BIBO stable if bounded? inputs r produce
bounded outputs y. When ¢ € (¢;, t;41) the reset control system behaves as the LTI system
(2) so that

t 0
_ Acg(tfti) + Acg(tfo')
z(t) =e x(tz)+/tie [T(U) ]da.

Since y(t) = xp2(t), then zp(t;) = r (t;). Hence,
o (t) = pult —t)za(t) +palt —t)r(t) + /t; pis(t — o)r(o)do;
Tp(t) = par(t —t)xe(t;) + poa(t — t)r(t;) + /t; pas(t — o)r(o)dos; (5)

where again, p;;(t) is the (i, j)th entry of e, We have the following lemma:

Lemma 2: Assume A is asymptotically stable. If there exists an M such that |z (t;)] <
M for alli=1,2,...,00, then (1) is BIBO stable.

Proof: Since A is stable, then from (5) there exist constants « and 3 such that |z (t)| <
Blze(t;)| + « foralli=1,2,...,00 and all t € (¢;,t;41). It follows that y is bounded. O

The main result of this section is as follows.

Theorem 2: Assume Ay is asymptotically stable. If there exists a v < 1 such that
Ip1(mi)| <y foralli=1,2,...,00, then (1) is BIBO stable.

Proof: From (5), we have
tit1
ra(t) = pu(m)za(t) +pu)rt) + [ pultin — o)r(o)do,
Because A, is asymptotically stable, there must exist a positive constant « such that

|ze (1) < |pu(m)] |za ()] +
< vl|ralt)| + «

. 1 — f)/l
< 9 t
Y za(t)] + 1 _7a
< t .
|wer (t1)] + 1 _704
So, there exists an M such that |z (¢;)] < M foralli =1,2,...,00. From Lemma 2, (1) is
BIBO stable. O

2A signal z is said to be bounded if there exists a constant M such that |z(t)| < M for all ¢t > 0.
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Remark: In Section 6 we focus on a particular class of second-order L(s), see (7) and
show in the Appendix that the conditions of Theorem 2 are always satisfied. Thus, Theorem 2
is not vacuous.

5 Properties of the Step Response

In this section we analyze the response of reset control systems (1) to a constant reference
signal 7(t) = ro.

5.1 Steady-state response

Assume that L(s) contains at least one integrator. Consequently, there exists an & € R?
such that A£ = 0 and C& = ry. Define the state transformation Z,(t) = z,(t) — £ and
associated transformed system:

To(t) = AZe(t) + Bag(t)
(t) = —Czy(t) — bxf(1); te¢ 1
.’Z‘f(t-'_) = 0 tel
g = Ciy (6)
where
]:{tz | gj(tz) :O, ti >t 1+ o, 0'>0, 221,2,,00}
The following is straightforward.

Lemma 3: If L(s) has at least one integrator, then system (1) and system (6) are
equivalent under the state transformation To(t) = x,(t) — €. O

This lemma states that we need only analyze the zero-input reset control system (6).
Indeed, since

y(t) = 9(t) + C& = §(t) + 1o

the response of a second-order reset control system (1) to r(t) = ry is equal to its zero-input
response plus 7. The following is immediate from the results in Section 3.

Lemma 4: Assume L(s) contains one integrator and r(t) = ro. Then the following are
true for (6):

1. Let 79 > 0 be the smallest number satisfying ps1(179) = 0. Then, tiyy = t; + 10 for
i=1,2,... 0.

2. The equilibrium state is asymptotically stable if and only if [p11(70)| < 1.

3. The output y satisfies y(t + 19) — 10 = p11(70)[y(t) — o] for all t > t;. O



Asymptotic tracking of step inputs now follows directly from the last two claims made
in Lemma 4.

Theorem 3: Assume L(s) contains at least one integrator and (1) is asymptotically
stable. Let r(t) = ry. Then, limy_, y(t) = 19. O

5.2 Transient response

Our next result proves that the step-response maximum of (1) occurs during the time
interval (¢1,t; + 79). This proves to be valuable since, as we see in the next section, this
maximum can be related to the FORE’s pole b when L(s) takes a standard second-order
form.

Theorem 4: Assume L(s) contains at least one integrator, (1) is asymptotically stable®

and r(t) = ry. Let M, £ SUPs~q |y (t) — ro| denote the step-response mazimum. Then,

M, = ) — 1ol .
ehax ly(t) — 7ol

Proof: From Lemma 4, we have

y(t +70) — 10 = p11(70) [y (t) — 70]

for all £ > t;. Since system (1) is asymptotically stable, then, from Lemma 4, |py;(7)| < 1.
Hence,
sup |y(t) —rol < max |y(t) —rol.

t>t1+70 L€ty ,t1+70]
It then follows that
su t) —rg| = max t) — 1ol .
uply(t) — ol = _max |y(t) ~ ol

a

Since the reset control system (1) behaves as a linear system before its first reset, then its

rise time is that of its base-linear system. The 2% settling time ¢, can be computed using the

third statement in Lemma 4 where outputs over adjacent intervals are shown to be scaled

copies of each other. Indeed, using this, the settling time is computed as t, = k1y where k

is the smallest integer satisfying the inequality |py1(7o)|* M, < 0.02. We now illustrate these
properties for a special class of second-order reset control systems.

3Recall from Theorem 1 that (1) is asymptotically stable iff |p;1(70)| < 1.



. __wi(sth)
6 Reset Control Systems with L(s) = S5+ 2Cwn)

In this section we illustrate the results in Section 5 on a class of second-order reset

control systems where
2
wr(s+b
L(s) = ot D,
s(s + 2Cuwn)

A reason for considering this L(s) is that the base-linear system of (1) has the transfer
function*

b, ,w, > 0. (7)

Y(s) w?

1

R(s)  s2+2Cw,s + w?

which is descriptive of linear feedback systems dominated by a complex pole pair. For this
class of reset control system, the corresponding A. is asymptotically stable. Moreover,
in the Appendix we show that |p;;(7)| < 1 for all positive parameters (b,(,w,) and any
7 > 0. Consequently, Theorems 1 and 2 are in effect and this class of reset control system
is asymptotically and BIBO stable. As far as the step response is concerned, we can invoke
Theorem 3 and conclude that the response asymptotically tracks a constant reference. From
Theorem 4 the step response maximum M, is equal to the peak response in the first reset
interval [t1,%, + 7p). In [7], this overshoot value has been explicitly computed in terms of
b, ¢, and w, as repeated below:

M, = e ™/VI=¢ _ A (8)

where gt , jeu]
R[4M2¢2e=CSH_2¢ M(1—4¢2 M)e—H _
1—4C2M+4C2M2 I C Z 05
A =
R[M?e=SH—M(1-2(M)e~H/M]
12 M+M? ’ (<05
R:eﬁamosg M:&' H:W—arccosg

) b ? /1 — CZ
and where w, is the unity-gain crossover frequency of |L(jw)|. The rise time is exactly that

of the base-linear system (= %) with the settling time given by

km
V 1 - <2wn

where k is the smallest integer satisfying |py1(7o)|" M, < 0.02.
To further illustrate, consider:

ts =

s+1
Lis) = s(s+0.2)

“Notice that the zero term s + b is included in L(s) to stably cancel the corresponding pole term in the
FORE when no reset occurs.




corresponding to the choices: b = 1, ( = 0.1 and w, = 1. The step response of the reset
control system (1) and its base-linear system (2) are compared in Figure 2. The value of
b =1 is chosen in accordance with (8) to reduce the overshoot in the reset control system
to approximately 40% as compared to almost 70% in the base-linear system’s response. The
settling time is smaller while the rise times are similar. This simple comparison shows some
of potential of using reset control to improve the tradeoffs in feedback control systems. The

interested reader is directed to [4], [5], [13] and [14], for further discussion and illustration
of reset control.
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Figure 2: Comparison of step responses for reset control system (solid) and it base-linear system
(dotted).



7 Conclusion

In this paper, we have focused on reset control systems comprised of a FORE reset
element and a second-order loop. We gave sharp results for asymptotic and BIBO stability,
asymptotic tracking of constant inputs and transient-response properties such as rise time,
overshoot and settling time.
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Appendix

A Showing |pi(7)| < 1

This Appendix shows that |p;;(7)| < 1 for all positive (b, (,w,) and all 7 > 0, where
(24 d?)[e™ + Le™sin(dr)] + (b* — 2bc)e™ [cos(dT) + & sin(dT)]
2 4+ d? 4+ b* — 2bc

is the (1,1) element of e“<™ and where ¢ = (w, and d = /T — (Zw,.

(9)

pn(T) =

Case 1: (b < ¢) First,

dpi(r) (P Hd)b{—e " + e Tleos(dr) — “FD sin(dr)]}
dr ¢+ d? + b2 — 2be
(@ + dP)bet {9 [cos(dT) + @ sin(dr)] — 1}

b? — 2bc + 2 + d?
Since ¢ — b > 0, then

—b in(d
e~ [cos(dT) + (c=b) sin(dr)] < €797 [1 + (c—b)T smd( m) ]
-
1+ (c—b)T
G
< 1

From (10), it is easy to prove that dpii;y) < 0. From (9), p11(0) = 1. Hence, |p11(7)| < 1, for
all 7 > 0.
Case 2: (b > ¢) Formally setting the numerator of (10) to zero we obtain

b—
% sin(dr,,) = cos(dr,) — e 0™, (11)
Then,

ogi)éo[pu(ﬂ] = max{p11(0), p11(00), p11(7m)}- (12)
Substituting (11) into (9) gives

—cetm + b= cos(dT,)

pn(Tm) = b_ ¢
< —ce~bm 4 pecm
- b—c
Let T
A —ce P+ be €
g(t) = 2
—c
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with ¢(0) = 1 and where
dg(t)  —be(e ™ —e™™)
dt (b—c)

Because b > ¢, then 'fig(—gt)) < 0 for all t > 0. It then follows that g(¢) < g(0) =1 for allt >0

since g(oo) = 0. Therefore, pi1 (1) < g(7m) < 1, p11(0) = 1 and pyy(00) = 0. Thus, from
(12), |p11(7)] < 1 for all 7 > 0. Done.
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