
EXPERIMENTAL DEMONSTRATION OF RESET CONTROL DESIGN1

Y. Zheng,2     Y. Chait,3     C.V. Hollot,4     M. Steinbuch5    and     M. Norg6

ABSTRACT

Using the describing function method, engineers in the 1950’s and 1960’s conceived of
novel nonlinear compensators in an attempt to overcome the performance limitations
inherent in linear time-invariant (LTI) control systems.  This paper is concerned with a
subset of such devices called “reset controllers” which are LTI systems equipped with
mechanism and law to reset its states to zero.  This paper reports on a design procedure
and a laboratory experiment in which the resulting reset controller provides better
tradeoffs than LTI compensation.  Specifically, we show that reset control almost doubles
the level of sensor-noise suppression without sacrificing either disturbance-rejection
performance or gain/phase margins.  To the best of our knowledge, this is the first
experimental demonstration of reset control in the literature.
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1.  INTRODUCTION

For decades, control engineers have been stymied by the inherent performance limitations
of linear time-invariant (LTI) control systems.  In the 1950’s and 1960’s, they developed
novel nonlinear compensators in an effort to overcome these constraints (for example, see
Levinson (1958) and Foster et al. (1966)).  This paper is concerned with a subset of these
devices called “reset controllers” which are LTI systems with mechanism and law to reset
their states to zero.  A classic example of reset control is the so-called Clegg integrator
which is a linear integrator whose output resets to zero whenever its input crosses zero
(Clegg, (1958)).  The motivation behind its development appeared to be its describing
function °−∠ 1.38)/69.1( ω  which favorably compares to the frequency response of a
linear integrator °−∠ 90)/1( ω .  Indeed, its smaller phase lag hinted of a potential to
circumvent the limitations imposed on LTI control systems by Bode’s gain-phase
relationship.  However, twenty years passed before the work of Krishnan and Horowitz
(1974) made an attempt to systematically incorporate a Clegg integrator into control
system design, or, to generalize the resetting concept to higher-order systems as done in
Horowitz and Rosenbaum (1975).  Very importantly, these two papers showed via
simulations that reset control could provide better tradeoffs than LTI control.  They also
showed that improved performance did not come from a “blind resetting” of an LTI
controller, but from a distinct and intentional interplay between the reset mechanism and
an appropriately designed LTI controller component.

Despite this demonstrated potential, reset control has remained an enigma on the modern
control scene.  One reason is that real-time implementation of reset control laws may have
challenged the technologies of the 50-70’s.  Another reason may be the lack of sharp
theoretical results to firmly establish the stability and performance properties of reset
control systems.  While some of our recent work is aimed at developing such results (see
Hu et al. (1997) and Hollot et al. (1997)), the objective of this paper is to report on the
experimental application of reset control conducted in the Ph.D. thesis of Zheng (1998).
This experiment involves the speed control of a tape-drive system and introduces a
modified version of the design procedure first developed in Horowitz and Rosenbaum
(1975).  The experiments confirm the earlier simulation studies and show that reset control
can provide better tradeoffs than LTI compensation.  Specifically, we show that reset
control almost doubles the level of sensor-noise suppression without sacrificing either
disturbance-rejection performance or gain/phase margins.  In addition to providing one of
the first experimental demonstrations of reset control in the literature, we hope this paper
also provides renewed interest in the topic and supplies basis for further theoretical study.
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The paper is organized as follows.  In Section 2, we introduce the tape-speed control
system and performance objectives that form the basis of our study.  We argue that LTI
control is not capable of meeting the given objectives.  This sets the stage for the reset
control design discussed in Section 3.  Simulations show that reset control can alleviate
these LTI limitations.  In Section 4, we provide experimental verification of the reset
control design.  Finally, in Section 5 we discuss shortcomings in our knowledge of reset
control which suggest areas for further study.
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2.  LTI DESIGN LIMITATIONS

This section introduces the specific control design problem studied in this paper and
discusses the limitations of linear feedback control particular to this example.  These
tradeoff issues are well-known to control engineers and provide motivation for the reset
control design presented in Section 3.

The feedback control design problem studied in this paper involves disturbance
attenuation and sensor-noise suppression for a tape-speed control system.  There are
several subsystems in a tape-transport system such as the tape-speed and the tape-tension
control subsystems.  In this paper, we focus only on the tape-speed control subsystem
consisting of a motor and belt-driven capstan wheel as shown in Figure 1.

Capstan
Head

Supply ReelTake-up Reel

Belt

Frequency
to voltage
converter

Controller
Motor

tape

Figure 1: Schematic of the tape-speed control subsystem

The capstan's friction force pulls the tape past the read/write head and a frequency-to-
voltage converter measures the tape-speed error relative to a 3.15 kHz master-tape speed.
This tape-speed error signal is then fed back to the controller.  Unlike conventional tape
devices that use motor current as a measure of tape speed, this scheme measures tape-
speed errors directly, thus providing a more accurate measurement of the physical variable
to be controlled; see Pear (1967) and Mee and Daniel (1988) for details.  A block diagram
of the closed-loop tape-speed system is shown in Figure 2 where P represents the
dynamics from the motor voltage u (volts) to the tape speed error y (volts) as measured by
the frequency to voltage converter.  System G represents the LTI controller, d is the
lumped disturbance accounting for eccentricities and mechanical load variations and n
models sensor noise.  Eccentricities produce periodic disturbances related to the rotational
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speed of various mechanical parts such as reels, capstan, etc. (see also Mathur and
Messner, ((1998), while mechanical load variations are modeled by a broadband
disturbance signal.
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Figure 2: The closed-loop system configuration

The plant transfer function
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was identified from a measured frequency response.  In Figure 3 we compare the
experimental and identified plant data which agree well.

10
-1

10
0

10
1

10
2

-100

-50

0

50

M
ag

ni
tu

de
 (d

B
)

10
-1

10
0

10
1

10
2

-200

-100

0

100

200

P
ha

se
 (D

eg
re

e)

Frequency (Hz)

Figure 3: Comparison of experimental and identified plant frequency responses
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In order to illustrate the LTI design limitations, we consider the following performance
objectives. These objectives were chosen to illustrate the limitations of linear control and
do no necessarily reflect realistic objectives for the tape-speed control system. In the
following, the Fourier transform of a time-domain signal, say y(t), is denoted by y(jω).
Similarly, the frequency response of a system P is denoted by P(jω).

• Disturbance rejection: For all disturbances d satisfying 1)( ≤ωjd , the output y
should satisfy 5.0)( ≤ωjy  for all )2(2 π≤ω .  Also, the response to a step disturbance
should be zero in the steady state and limited to 20% overshoot.

• Sensor-noise suppression: For all sensor noise n satisfying 1)( ≤ωjn , the output y
should satisfy 4.0)( ≤ωjy  for all )2(10 π≥ω .

To utilize frequency domain design techniques, we first translate the above specifications
into constraints on the loop transfer function )()()( ωω=ω jPjGjL .

• Disturbance rejection: The disturbance-rejection specification can be described in
terms of the sensitivity function:

)2(2,5.0
)(1

1 π≤ω≤
ω+ jL

Zero steady-state error is achieved by requiring an integrator in the controller G.

• (Gain/Phase) Margins:  Based on a second-order response assumption, we convert
the overshoot specification into the following classical gain/phase margin constraint
which also provides a reasonable degree of robustness against plant variations:
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• Sensor-noise suppression: The sensor-noise specification can be described in terms
of the complementary sensitivity function:
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Based on our experience with controller implementation, we chose to design controllers
directly from the plant frequency-response data.  The Quantitative Feedback Theory
(QFT) environment allows a designer to take advantage of such data, and, using the QFT
Toolbox (Borghesani et. al. 1994), we attempted to design a controller to satisfy these
performance objectives.  However, it appears that LTI control may not be able to achieve
these specifications.  To see this, consider the QFT-derived controller

3)5.92 + 88.25 + ( 4)1.272 + 215.3 + ( 62.48) + 14.29 + ( 
3)4.10 + 58.15 + ( 2)2.29 + 19.21 + ( 3.60)+( 2)2.57+14.85()( 222

2

1

2

essesssss
essesssessG =

and the loop frequency response PG1  displayed on the Nichols chart in Figure 4.
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Figure 4:  QFT bounds and the loop frequency response PG1

The QFT bounds in Figure 4 precisely describe our performance specifications as
constraints on the loop frequency response; see Zheng (1998) for details.  Specifically, a
solid-line bound requires the loop's response PG1  to lie above it to satisfy the
specification.  Conversely, a dashed-line bound requires the loop's response to lie on or
below it to satisfy the specification.  From Figure 4, we see that the loop PG1  satisfies the
disturbance rejection and gain/phase margin specifications, but violates the sensor-noise
suppression specification at 10 Hz; i.e., it does not lie below the bound.  It seems unlikely
that this design can be uniformly improved over the frequency range from 2-10 Hz.
Indeed, since PG1  lies on the gain/phase margins boundary over the range 2-10 Hz and
lies on the disturbance rejection bound at 2 Hz, then a loop magnitude reduction at 10 Hz
must be followed by a deterioration in either the gain/phase margins or disturbance-
rejection performance.  This tradeoff is due to Bode’s classical gain-phase relation which
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links and constrains the amount of loop gain and phase change over a given frequency
range.7

To illustrate this tradeoff, consider the “reshaped” loop PG2  where

4)1.579 + 125.7 + 5925)( + 88.25 + 62.48)( + 14.29 + ( 36.49)+( 220.3)+( 

4)1.579 + 75.74 + 3679)( + 55.51 + 216.3)( + 20.33 + ( 3.606)+( 257.1)+( 11.13
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This loop  was designed to satisfy both the sensor-noise suppression and disturbance
rejection specifications as shown in Figure 5.  As expected, decreasing the loop's
magnitude at 10 Hz results in additional phase lag at smaller frequencies leading to
violation of the gain/phase margins margin constraint.
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Figure 5: QFT bounds and the reshaped loop PG2

These design tradeoffs can also be seen in the time domain.  For example, consider the
response y to both a step disturbance d and 10 Hz sinusoidal sensor noise n.  The
simulated responses for the two controllers 1G  and 2G  (Figure 6) verify the anticipated
50% increase in sensor-noise suppression for the second design.

                                                       
7 We attempted to improve performance by solving an ∞H mixed-sensitivity problem wherein the
complementary sensitivity and sensitivity weights were derived directly from the QFT-derived loop PG1 .
The resulting H∞ -optimal design provided only marginal improvement over the frequency range 2-10 Hz.
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Figure 6: Simulated responses y to step disturbance d and sinusoidal sensor
noise n corresponding to controllers 1G  (solid) and 2G  (dashed)

However, when the sensor noise is removed, the smaller gain/phase margins of the second
design PG2  manifest itself as a 100% increase in overshoot; see Figure 7.
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Figure 7: Simulated responses y to a step disturbance d
corresponding to controllers 1G  (solid) and 2G  (dashed)

In summary, we have described a control problem where it is difficult, if not impossible, to satisfy the

performance using an LTI controller.  In the next section we turn to the class of reset controllers to

provide better tradeoffs. 3.  RESET CONTROL DESIGN
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As demonstrated in the preceding section, LTI control systems are limited in their ability
to make tradeoffs between competing performance objectives such as disturbance
rejection, gain/phase margins and sensor-noise suppression.  This motivates the study of
reset controllers as a means for possibly improving this tradeoff.  In this section we
continue to study the control system problem introduced in the previous section and
consider a reset controller composed of a cascade connection of a reset network RG  and
a LTI controller LG  as shown in Figure 8.

Figure 8: A reset control system

In this paper we take RG  to be a first-order reset element (FORE) as introduced in
Horowitz and Rosenbaum (1975).  This controller consists of a first-order linear filter with
logic to reset the filter state to zero when its input e  crosses zero.  More precisely, the
reset system RG  is described by the reset differential equation
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where x is the state and where the filter's pole 0>b  is a design parameter.  Essentially,

RG  is a reset version of the linear element b)1/( +s .  The linear part of the reset controller
design is taken as

( ) ( )( )b2 += ssGsGL

As mentioned in the introduction, the design of the reset controller proceeds in two steps
and involves interplay between the design of the linear element LG  and the reset network
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RG .  The rationale introduced in Horowitz and Rosenbaum (1975) is to first design RG
and LG  so that the linear closed-loop response8 satisfies both the disturbance rejection
and sensor-noise suppression specifications (at the expense of violating the gain/phase
margin constraint).  In our case, this linear response is dictated by 2G  which, by design,
meets the disturbance rejection and sensor-noise suppression requirements; see Figures 6-
7 and the associated discussion.  The next step involves choosing pole b to improve the
overshoot response.  Horowitz and Rosenbaum (1975) showed that resetting action
reduces overshoot.  Indeed, under a second-order assumption,9 they related this overshoot
to the crossover frequency cω 10 and phase margin of the linear design and the pole of the
reset element as shown in Figure 9 where b

cM ω= .  From Figure 5, the crossover
frequency and phase margin of the linear loop PG2  is approximately 5 Hz (30 rad/sec)
and °30  respectively.  The design curve in Figure 9 indicates that b = 30 (M = 1) reduces
the overshoot to 20% which satisfies the specification.  We thus select b = 30 which
completes the design.  Finally, we note that in Horowitz and Rosenbaum (1975), b was
required to be a pole of the linear design LG .  Our choice of forming

( ) ( ) ( )sGbssGL 2+=  removes this constraint.
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8 By linear closed-loop linear response we refer to the control system’s response in the absence of
resetting.  In the absence of resetting, the cascade connection of RG  and LG  reduces to 2G .

9In our context, this assumption amounts to the linear closed-loop transfer function 
PG

PG

2

2

1 +
 behaving

like a standard second-order system 
22

2

2 nn

n

ss ω+ζ ω+

ω
.

10  The crossover frequency satisfies 1|)c(| =ωjL .
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linear design and the reset pole b.

We now evaluate this reset controller design against our best linear design 1G  via
simulation.  In Figure 10 we compare the responses of these control systems to both step
disturbance d and 10 Hz sinusoidal sensor noise n.  In Figure 11 we show responses to
only the step disturbance.  The reset control design performs better by providing
approximately 4-5dB more sensor noise attenuation (Figure 10) while displaying similar
transient response (Figure 11).  The reset control meets the performance specifications
that linear control was unable to satisfy.
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Figure 10: Simulated responses y to step disturbance d and sinusoidal noise n
corresponding to controllers 1G  (solid) and reset with 2G  (dashed)
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Figure 10: Simulated responses y to a step disturbance d corresponding to
controllers 1G  (solid) and reset with 2G  (dashed)

Finally, to illustrate the design interplay required between the reset and linear elements,
suppose we blindly implement the reset controller
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with the linear element

( ) ( )( )301 += ssGsGL

Clearly, there is no connection between the design of RG  and LG .  The simulations in
Figures 12 and 13 show that improved performance does not occur.  Moreover, the
reduction of sensor noise in Figure 12 comes at the expense of sustained oscillations in
Figure 13.  Thus, improved performance does not come from blind resetting of an existing
LTI controller such as 1G .  Instead, it comes from distinct and intentional interplay
between the reset mechanism and an appropriately designed LTI controller component
such as 2G .
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Figure 12: Simulated responses y to step disturbance d and sinusoidal noise n
corresponding to controllers 1G  (solid) and reset with 1G  (dashed)
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Figure 13: Simulated responses y to a step disturbance d corresponding to
Controllers 1G  (solid) and reset with 1G  (dashed)
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4.  EXPERIMENTAL VERIFICATION OF RESET CONTROL

In this section we report on a real-time implementation of the reset controller designed
and simulated in Section 3.  The tape-drive system was described in Section 1 and
together with the control hardware is shown in Figure 14.  The controllers were digitally
implemented on a TMS320C30 DSP system (32-bit floating point, 33 MHz 16-bit,

3.0± volts dynamics range A/D and D/A channels) using a 1kHz sampling rate.  The
controller integrator was implemented on a high-precision analog operational amplifier
since it had larger dynamic range than digital implementation.

Figure 14: Experimental tape-speed system and control hardware

To simulate the step disturbance d and sensor noise n, we introduced a square-wave (with
four-second period) and 10 Hz sinusoid respectively at the output of the frequency-to-
voltage converter (see Figure 1).  The response to this excitation was measured for both
the linear 1G  and reset11 controllers.  The experimental results are shown in Figure 15.
They show that both systems have similar disturbance rejection and transient behavior.
However, as in the simulations, reset control improves sensor-noise suppression by 4-5dB.

                                                       
11 Recall that the reset controller is a cascade connection of a first-order reset element RG  and linear
element 2G  as described in Section 3.
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Finally, we excited the tape-speed servo with filtered white noise n (50 Hz bandwidth) and
measured the averaged voltage spectra of the frequency-to-voltage converter output for
both the linear and reset control systems.  The results, plotted in Figure 16, show that
reset control provides an improvement in broadband sensor-noise suppression of 4-6dB
over the 3-10 Hz frequency range



17

10
0

10
1

10
2

-65

-60

-55

-50

-45

-40

-35

-30

-25

-20

Frequency (Hz)

 O
ut

pu
t F

FT
 (1

0*
lo

g1
0 

v)
reset

linear

Figure 16: Spectra of tape-speed response to filtered white sensor noise (50 Hz
bandwidth) - comparison between linear 1G  (solid) and reset 2G  (dashed)
controllers

5.  CONCLUSIONS

As demonstrated in this paper, a key element in reset control is the design of a base, linear
control system with small gain/phase margins.  The effect of introducing reset is to
increase these margins without sacrificing the benefits derived from such linear
controllers.12  This is achieved by designing the reset action to improve transient
performance.  It was in this context that Horowitz and Rosenbaum (1975) made a
connection between reset action, the linear control element and reduced overshoot.  In
fact, their design rule (see Figure 9) constitutes the only concrete guideline for presently
designing reset controllers.13  However, the scope of this guideline is limited.  Specifically,
the design rule guarantees only the following:

If the linear closed-loop step system is second-order, then the first peak in the step
response of the reset control system is reduced to an amount indicated in Figure 9.

Even if the linear step response happens to satisfy this second-order assumption, the
design rule does not guarantee:

                                                       
12 These benefits include improved tradeoffs between competing objectives such as disturbance rejection
and sensor-noise suppression which come at the expense of reduced gain/phase margins.
13 It is interesting to note that describing functions, which provided the original motivation behind reset
elements, do not play a role in this design technique.
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Stable response to step disturbances.  There is no guarantee that the response of the
reset control system converges.  Also, there is no guarantee on behavior when
sinusoidal or random sensor noise is introduced.

Disturbance rejection and sensor noise suppression performance.  There is no
guarantee that the reset control system inherits the good performance properties of
the linear design.

Overshoot reduction: There is no guarantee that the (global) maximum of the step
response is reduced.  The design rule guarantees only the first peak of the step
response to be reduced.

In spite of these shortcomings, the ability of reset control to perform better than linear
control (as demonstrated in this paper by both simulations and experiments) is a source of
optimism.  However, it appears that a number of theoretical questions need to be
formulated and answered before reset control can be embraced as a viable control
engineering tool.  We have begun to address some of these issues in Hollot, et al. (1997)
and Hu, et al. (1997).
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