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Abstract

In this paper we investigate the e®ects of microphone and speaker locations on the per-

formance of active noise control in ducts. We study a so-called \symmetric" con¯guration in

which the collocated performance microphone/control speaker and the collocated measurement

microphone/disturbance source pairs are located equidistance from the duct center. By apply-

ing an \alignment angle" analysis to a duct model, we show this con¯guration to be prone to

plant-disturbance misalignment. As a result, ampli¯cation at the measurement microphone and

reduced stability margins occur. Stability robustness to modeling uncertainty is improved if the

measurement microphone/disturbance source are de-collocated.
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1 Introduction

Since the development of the digital computer, research in active noise control (ANC) has re-

ceived much academic attention [1, 2]. In addition to its potential for commercial applications,

knowledge gained from ANC system analysis can be applied to problems of similar nature; for

example, control of °exible structures [3]. Of particular importance is the study of sensor and actu-

ator con¯gurations and their e®ect on closed-loop stability and performance. One such analysis was

given in [4], where the relationship of microphone and speaker locations to closed-loop performance

was discussed.

In this paper we examine the particular ANC con¯guration used in [5], which conforms with

the preferred speaker/microphone location suggested in [4]. In a nutshell, the motivation for this

con¯guration is that collocation of an actuator x and a sensor y renders the corresponding transfer

function Gyx minimum phase and hence, free from the deleterious e®ect that right-half plane

zeros have on closed-loop system properties [6]. Another suggestion from [4] is that collocation of

actuators (or sensors) degrades closed-loop performance and hence undesirable. This motivated

researchers to separate the actuators and sensors as far as possible. Taken together, these two

constraints yield the symmetric speaker/microphone arrangement shown in Figure 1, which was

used in [5]. The measurement microphone is collocated with the disturbance source, and the
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Figure 1: ANC system in a duct.

control speaker is collocated with the error microphone; then, these two speaker/microphone pairs

are separated from each other. This con¯guration gives good closed-loop performance1 at the error

1That is, the acoustic signal (due to disturbance d) at the error microphone is attenuated.
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microphone. However, in [7] we have shown that signi¯cant ampli¯cation of the disturbance occurs

at the measurement microphone, indicating poor stability robustness. This ampli¯cation occurs at

frequencies where the plant2 and disturbance are poorly aligned. In this paper we establish why

this occurs and relate it to a particular con¯guration referred to as \misalignment-prone."

The paper is structured as follows. Section 2 brie°y reviews a dynamic model for duct acoustics.

This model will be the basis for our illustrative simulations. Sections 3 and 4 review our previous

results relating plant-disturbance misalignment to closed-loop response, which is then used in Sec-

tion 5 to study the symmetric con¯guration in Figure 1. In Section 6, we illustrate, by simulation

example, that relaxing \symmetry" can improve stability robustness.

2 Model of duct acoustics

A basic con¯guration of an active noise control system consists of a duct with two loudspeakers

and two microphones (see Figure 1). The upstream speaker simulates a disturbance source that

injects acoustic \noise" into the duct. A measurement microphone detects the disturbance near

the source while the downstream error microphone is located at a point where noise attenuation is

desired. The ANC system uses the information provided by these two microphones to generate a

signal sent to the control loudspeaker. The objective of the controller is to minimize the acoustic

energy at the error microphone.

Consider the acoustic duct with dimensions as shown in Figure 2. Assume that the duct diameter

is signi¯cantly smaller than its length. Then, as shown in [4], its dynamics can be described by a

one-dimensional wave equation as

1

c2
ptt(l; t) = pll(l; t) + ½0 _vu(t)±(l ¡ Lu) + ½0 _vd(t)±(l ¡ Ld)

where p(l; t) is the acoustic pressure at location l meters from the upstream end of the duct, c is

the phase speed of the acoustic wave (343 ms in air at room conditions), vu(t) and vd(t) are the

speaker cone velocities of the control speaker and the disturbance speaker, respectively, and ½0 is

2In our problem formulation the plant is de¯ned as the dynamical system relating the control speaker input to

the two microphone outputs. See Section 3 for more detail.
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Figure 2: Acoustic duct.

the equilibrium density of air (1:21 kg
m3 at room conditions). Using separation of variables [8] and

retaining r modal frequencies, p(l; t) can be approximated by

p(l; t) »=
rX
i=0

qi(t)Vi(l):

By introducing proportional damping, a state-space approximation is

_x(t) = Ax(t) +Bu(t) +Dd(t)

ye(t) = Ex(t)

ym(t) = Cx(t) (1)

where

x(t) =

∙ R t
0 q1(¾)d¾ q1(t) : : :

R t
0 qr(¾)d¾ qr(t)

¸T
;

A = diag

0B@
264 0 1

¡!21 2³1!1

375 ; :::;
264 0 1

¡!2r 2³r!r

375
1CA ;

B =
½0
As

∙
0 V1(Lu) : : : 0 Vr(Lu)

¸T
;

D =
½0
As

∙
0 V1(Ld) : : : 0 Vr(Ld)

¸T
;

C =

∙
V1(Lm) 0 : : : Vr(Lm) 0

¸
;

E =

∙
V1(Le) 0 : : : Vr(Le) 0

¸
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and

!i =
i¼

L
c; Vi(l) = c

r
2

L
sin

i¼

L
l; i = 1; 2; 3; : : : :

As is the cross-sectional area of the speaker, L is the length of the duct and ³i is the proportional

(viscous) damping of the ith acoustic mode.

To ¯nd a suitable model for controller design, we also require a transfer function model from

the speaker voltage input Vs to the speaker ba²e acceleration _vs. This transfer function can be

approximated, as in [8], by

Ps(s) =
svs(s)

Vs(s)
=

Kss
2

s2 + s³s!ss+ !2s

where Ks is a speaker constant, !s is the natural frequency of the speaker and ³s is the damping

ratio. By cascading this transfer function to the duct dynamics in (1) we have a working model

of an ANC system. In the sequel we will use this model to simulate the closed-loop response to

changes in actuator/sensor con¯gurations. For simplicity, the dynamics of the microphones as well

as the ampli¯er are assumed to be constant gains.

3 Performance analysis based on plant-disturbance misalignment

In this section we review our results from [7] where the properties of single-input two-output

(SITO) feedback systems [9] were used to analyze the disturbance attenuation performance of an

experimental ANC setup [5]. We start by formulating the duct (or plant) as a SITO system P(s)

where the input is the control speaker input u and the outputs are the microphone signals ym and

ye. Conversely, we view the controller as a two-input, single-output system C(s) with inputs ym

and ye and output u. Their interconnection forms the feedback control system shown in Figure 3.

The objective is to analyze the performance at ym and ye. We show that ye is attenuated at the

expense of ampli¯cation at ym. Most importantly, this result holds independent of the controllers;

it depends only on the con¯guration of microphones and control speakers.

To start, consider Figure 3 where Ped(s), Peu(s), Pmd(s), and Pmu(s) are the transfer functions

from the disturbance speaker to the error microphone, the control speaker to the error microphone,

the disturbance speaker to the measurement microphone, and the control speaker to the measure-
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Figure 3: ANC as a single input, two output feedback system

ment microphone, respectively. Pmic and Ps represent microphone and speaker dynamics
3. Let

Cm(s) denote the feedforward controller and Ce(s) the feedback controller
4. Further, de¯ne the

plant, controller, and disturbance transfer functions as:

P(s)
4
=

264 Pmu(s)
Peu(s)

375 ; C(s)
4
= [ Cm(s) Ce(s) ];

Pd(s)
4
=

264 Pmd(s)
Ped(s)

375 :
Associated with this feedback system are several important transfer functions. These are the input

and output loop transfer functions: LI(s) = C(s)P(s) and LO(s) = P(s)C(s), the input and output

sensitivity functions: SI(s) = (1 + LI(s))
¡1 and SO(s) = (I+LO(s))¡1, and the input and output

complementary sensitivity functions: TI(s) = LI(s)(1+LI(s))
¡1 and TO(s) = LO(s)(I+LO(s))¡1.

The transfer functions at the plant input are scalar, while those at the plant output are 2 x 2.

We de¯ne the attenuation factor as the ratio of closed-loop to open-loop response

®(!)
4
=
jjSO(j!)Pd(j!)jj

jjPd(j!)jj : (2)

3Though in real ANC applications we do not have the speaker transfer function at the disturbance source, our

alignment angle analysis still holds.
4In the ANC literature, the action taken on the measurement microphone signal ym is referred to as \feedforward"

control, while action taken on ye is called \feedback" control. See [7] for more explanation on this terminology.
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The attenuation factor is used as a measure of closed-loop performance; i.e., ®(!) < 1 implies

attenuation while ®(!) > 1 indicates ampli¯cation of the disturbance. We also need the notion of

alignment angles from [9].

De¯nition 1: The plant-controller alignment angle (at frequency !) is

Ápc(j!)
4
= cos¡1

µ jC(j!)P(j!)j
jjC(j!jjjjP(j!)jj

¶
(3)

while the plant-disturbance alignment angle is

Ápd(j!)
4
= cos¡1

Ã
jPH(j!)Pd(j!)j
jjP(j!jjjjPd(j!)jj

!
: (4)

The plant and controller (plant and disturbance) are said to be perfectly aligned if Ápc(j!) =

0± (Ápd(j!) = 0±), and completely misaligned if Ápc(j!) = 90± (Ápd(j!) = 90±). We now state the

main result from [7].

Proposition 1: If jye(j!)j = 0 and Ápd(j!) = 90±, then

jym(j!)j
jjPd(j!)jj = ®(!) ¸

s
1 +

¯̄̄̄
Ped(j!)

Pmd(j!)

¯̄̄̄2
: (5)

From Proposition 1 we see that under perfect cancelation, ym(j!) is ampli¯ed if the plant and

disturbance transfer functions are completely misaligned. Furthermore, if jPed(j!)j À jPmd(j!)j,
then jym(j!)j is large.

4 Stability margins

In the last section we concentrated on performance analysis and presented a situation where

jym(j!)j becomes large as jye(j!)j approaches zero. Speci¯cally, we saw that jym(j!)j peaks at
the frequency where Ápd(j!) ¼ 90± and the ratio jPed(j!)j

jPmd(j!)j has a maximum. As a result, we would

expect smaller stability margins (or larger jjSO(j!)jj1) at this frequency. Therefore, our stability
analysis is focused on the condition Ápd(j!) ¼ 90± and jPed(j!)j

jPmd(j!)j À 1. In this section we study

the output sensitivity SO(j!) whose size jjSO(j!)jj1 provides one measure of stability margin;
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e.g., see [11]. Of equal importance is the size of output complementary sensitivity jjTO(j!)jj1.
Note that jj:jj1 is bounded below by the magnitude response of each element of the corresponding

transfer function. In our case, jjSO(j!)jj1 (jjTO(j!)jj1) becomes large as a result of the element
SO11 (TO11). Having jjTO11jj1 large, for example, indicates poor robustness to multiplicative plant

uncertainty in Pmu.

We separate the analysis into two cases: feedforward, and feedforward/feedback control.

Case 1: (feedforward; C(j!) = [Cm(j!) 0]) In this case, the system's closed-loop response is

given by

SO(j!) =

264 SI(j!) 0

¡ Peu(j!)
Pmu(j!)

TI(j!) 1

375 : (6)

Now, suppose jye(j!)j = 0. Then, as shown in [7]:

jTI(j!)j = jPed(j!)Pmu(j!)j
jPmd(j!)Peu(j!)j ¼

¯̄̄̄
Ped(j!)

Pmd(j!)

¯̄̄̄2
: (7)

With jPed(j!)j
jPmd(j!)j À 1, it follows from the fundamental algebraic constraint SI(j!) + TI(j!) = 1

that jSI(j!)j À 1. This in turn implies that jjSO(j!)jj À 1. Thus, whenever we use feedforward

control, C(j!) = [Cm(j!) 0], attenuation of jye(j!)j at a frequency where both jPed(j!)j
jPmd(j!)j À 1 and

plant-disturbance are misaligned necessarily leads to reduced stability margins.

Case 2: (feedforward and feedback control; C(j!) = [Cm(j!) Ce(j!)]) Using straightforward

manipulations, the output sensitivity and complementary sensitivity functions can be written as

SO(s) = I¡ SI(s)LO(s)

and

TO(s) = SI(s)LO(s)

where

SO(j!) =

264 SO11(j!) ¡Pmu(j!)
Peu(j!)

TO22(j!)

¡ Peu(j!)
Pmu(j!)

TO11(j!) SO22(j!)

375 (8)

and where SOij(j!) and TOij(j!) are the (i,j)th element of SO(j!) and TO(j!), respectively. Note

the similarities and di®erences to (6); e.g., SO11 and TO11 in (8) plays the same role as SI and TI

in (6) because of the algebraic constraint. We state without proof the following result from [7].
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Proposition 2: If jye(j!)j = 0, then

jTO11(j!)j =
jPmu(j!)Peu(j!)

j¯̄̄̄
Pmd(j!)
Ped(j!)

+ Ce(j!)
Cm(j!)

¯̄̄̄ : (9)

Proposition 2 shows that for perfect attenuation, jTO11(j!)j depends not only on plant and
disturbance transfer functions but also on both controllers. Therefore, unlike Case 1, the ratio

jPmu(j!)j
jPeu(j!)j does not impose a constraint on jTO11(j!)j.

Remark 1: It is interesting to note that in the feedforward case, stability margins depend only

on the magnitude ratio of Ped and Pmd and not on the controller; see (7). In contrast, Proposition 2

shows that the use of both feedforward and feedback a®ect stability margins. In experiments we

have shown [7] that using both feedforward and feedback controllers signi¯cantly improves stability

margins. Having noted this, we also realize that feedforward control schemes are prevalent in

ANC practice, and in the last section of this paper we demonstrate how their stability margins are

improved by modifying microphone-speaker con¯gurations.

5 Misalignment-prone con¯guration

Equipped with the theoretical preliminaries from the previous sections, we are now ready to

tackle the closed-loop system properties in terms of microphone-speaker con¯gurations. Consider

the situation below where two collocated pairs of microphone-speakers are symmetrically con¯gured

about the duct center. We assign numerical values to variables to the duct model as in Figure 4; i.e.,

let L = 0:85 meters, Ld = Lm = 0:15 meters, and Le = Lu = 0:70 meters. The speaker parameters
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Figure 4: Acoustic duct con¯guration with symmetric collocated microphone/speaker pairs.
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are chosen as in [8] with modal frequency = 67 Hz and damping ratio 0.74. Microphone dynamics

are ignored. Substituting these values into the duct model in Section 2, we obtain the four transfer

functions Ped(s), Peu(s), Pmd(s), and Pmu(s). The controllers Cm and Ce are designed using the

H1 synthesis technique [10]. The closed-loop frequency response at output ym and ye are shown

in Figure 5 which are similar to those in [7]; that is, attenuation at the performance output ye
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Figure 5: Comparison of ym(j!) and ye(j!) for symmetric duct con¯guration.

is achieved at the expense of ampli¯cation in ym. As discussed above, this peaking is related to

jjSOjj1, a measure of stability margin. Figure 6 shows the plant-disturbance alignment angle and
the disturbance gain ratio jPedj

jPmdj . Recall from Proposition 1 that ampli¯cation in ym occurs at a

frequency where the plant and disturbance are misaligned and jPedj >> jPmdj. Figure 5 and 6 shows
the existence of this critical frequency at 250 Hz. In this regard, we can use the plant-disturbance

misalignment angle Ápd and the disturbance gain ratio as a measure of closed-loop performance.

As Ápd approaches 90
±, ym is subject to ampli¯cation; the degree of ampli¯cation is related to

the disturbance gain ratio. The following proposition explains why the symmetric con¯guration is

susceptible to plant-disturbance misalignment.

Proposition 3: Consider a duct con¯guration as in Figure 4 where microphone/speaker pairs

are collocated and symmetric about the duct center; i.e., Ld = Lm = x and Lu = Le = L¡x. Then,
the plant and disturbance are completely misaligned when the phase di®erence between Ped(s) and

Peu(s) (or between Ped(s) and Pmd(s)) equals §( 12 + 2n)¼; n = 0; 1; 2; : : : .
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Proof: From (4), Ápd(j!) = 90
± when ¹Pmu(j!)Pmd(j!) + ¹Peu(j!)Ped(j!) = 0:

5 It is straight-

forward to verify that Ped = Pmu
4
= a 6 Ã and Peu = Pmd

4
= b6 µ. Hence ¹PmuPmd + ¹PeuPed =

ab6 ¡(Ã ¡ µ) + ab6 (Ã ¡ µ) = 0 when Ã ¡ µ = §(12 + 2n)¼; n = 0; 1; 2; : : : . 2

Proposition 3 states that symmetric duct con¯gurations are inherently misalignment-prone since

the condition Ápd(j!) = 90
± is determined solely by the phases of plant and disturbance transfer

functions. In Figure 7 we plot the magnitude and phase of Ped and Pmd (see Remark 2 below). The

comparison suggests that misalignment is likely to occur in symmetric con¯gurations since Ped and

Pmd share the same poles while the former is nonminimum phase and the latter minimum phase.

As seen from Figure 7, the phases of these transfer functions are similar in low frequency region.

After the ¯rst modal frequency, a RHP zero in Ped results in additional phase lag. At 250 Hz, this

di®erence equals 90± and the ¯rst instance of complete misalignment occurs. As the phase lag of

Ped increases with frequency, misalignments occur again at 500 Hz and 750 Hz.

Remark 2: The reason we choose to compare Ped and Pmd, instead of Ped and Peu in Figure 7,
6

is that the disturbance gain ratio jPedj
jPmdj can be readily observed in the same plot. Interestingly,

Figure 7 indicates that jPedj >> jPmdj at those frequency points where misalignment occurs. The
peaks in jPedj

jPmdj coincide with the peaks of Ápd; see Figure 6. This is unfavorable in view of constraints

(5) and (7).

5Overbar denotes complex conjugate.
6Recall that Pmd = Peu in the symmetric con¯guration.
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Figure 7: Magnitude and phase comparison of Ped and Pmd.

The symmetry assumption in Proposition 3 may appear arti¯cial, especially from an ANC

application viewpoint. However, the preference for collocation and separation as suggested in

[4] tends to force this structure. For instance, even if it were not feasible to collocate the ym

microphone with the disturbance, one may be tempted to install the microphone as close to the

disturbance source as possible. The result is a duct con¯guration which is only slightly perturbed

from symmetry. We have determined via computer simulation that plant-disturbance misalignment

persists even when the position of collocated microphone/speaker pairs is shifted. To demonstrate,

we create some MATLAB code to compute the alignment angle as a function of the location of

collocated error microphone/control speaker pair in the range of 0:4 to 0:8 meters. The collocated

measurement microphone/disturbance source pair was ¯xed at Ld = Lm = 0:15 meters. We

observed that Pmu always equal Ped, but Pmd and Peu di®er once symmetry is violated. Figure 8

shows the plot of max! Ápd and the disturbance gain ratio
jPedj
jPmdj versus the Le = Lu locations. We see

that max! Ápd remains close to 90
± in a fairly broad vicinity of the symmetric point Le = Lu = 0:70

meters. The disturbance gain ratio is also signi¯cant in this region.

We conclude from this observation that a con¯guration with both microphone/speaker pairs

collocated may not be preferred insofar as stability robustness is concerned. Therefore, we seek

an alternative con¯guration with improved stability margins while maintaining comparable perfor-

mance. An immediate suggestion is to de-collocate one of the two pairs. We want to keep error
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jPedj
jPmdj versus Le = Lu locations for \symmetric" duct con¯guration.

microphone and control speaker collocated because this renders Peu minimum phase and allows

attenuation to be achieved at ye, our primary performance objective. As a result, we propose in

the next section a new con¯guration where the collocation between the disturbance source and

measurement microphone is relaxed. Simulation results show stability margins are improved from

the symmetric case.

6 Simulation example: feedforward controller

The acoustic duct model developed in Section 2 is used to simulate the e®ect of microphone/speaker

locations to closed-loop properties. Here we focus only on the SISO controller structure C(j!) =

[Cm(j!) 0] for the following reasons. Firstly, feedforward control is the most common scheme

for ANC. Secondly, stability margins for this SISO controller do not depend on the controller; see

Remark 1. Thus, it is more illuminating to compare the e®ect of microphone/speaker locations to

closed-loop stability and performance. Moreover, analysis in [7] reveals that this SISO controller

has larger jjSOjj1 and jjTOjj1 and hence poorer stability robustness than the TISO controller case.

Using the same set of weighting functions, we perform H1 design for both the symmetric

duct in Figure 4 and the new proposed con¯guration shown in Figure 9 where we un-collocate

the disturbance source and measurement microphone. The speaker transfer functions are chosen

12
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Figure 9: Acoustic duct con¯guration with noncollocated disturbance/measurement microphone.

with the same parameters as in the previous section and the microphone and ampli¯er dynamics

are ignored. We choose Lm = 0:45 m ; i.e., ym is moved towards ye, but not collocated, since [4]

suggests that collocation of ym and ye results in closed-loop ampli¯cation. Figure 10 compares the

closed-loop performance ye of these two con¯gurations. On the average they are quite comparable,
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Figure 10: Comparison of closed-loop performance at ye.

especially in the low frequency region. However, lets do more analysis. As seen from Figure 11, the

maximum plant-disturbance alignment angle Ápd for the new duct con¯guration decreases slightly

from the symmetric case, but the peaking in Ápd and
jPedj
jPmdj no longer occur at the same frequency.

This is a good omen for improved stability margins7, which can be measured by the size of jjSjj1
and jjT jj1.8 Large jjT jj1, for instance, results in poor robustness to multiplicative plant uncertainty
in Pmu. Figure 12 compares the magnitude frequency response jS(j!)j and jT (j!)j between the two

7See (5) in Proposition 1.
8Since this simulation example is a SISO feedback system, we can restrict our attention to SI(s) and TI(s); see

(6) and (7).
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con¯gurations. We see that when ym and d are not collocated, jjSjj1 is reduced from 16 dB to 12 dB
and jjT jj1 from 18 dB to 10 dB. In classical stability analysis, jjSjj1 is interpreted as the inverse of

the distance of the loop frequency response to the critical point. Hence, large jjSjj1 indicates poor

stability margin. A comparison of Nyquist plots is shown in Figure 13. By using the same scale

we can see that the frequency response of the loop transfer function L(s) = Cm(s)Pmu(s) for the

symmetric con¯guration case is closer to the critical point ¡1 + j0 than that of the noncollocated
case. In the symmetric case, the gain margin is 1.08 dB and the phase margin is 15.7 degree, while

in the noncollocated d=ym case, the gain margin is improved to 3.21 dB and the phase margin is

21.2 degree.
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Figure 13: Comparison of Nyquist plots.

7 Conclusions

This paper suggests an application of results in [7] to the selection of a con¯guration for ANC in

ducts that yields good overall performance plus improved stability margins. The plant-disturbance

alignment does not depend on controllers, and allows us to evaluate fundamental limitations of

ANC before the control design phase. This is useful because installing sensors and actuators can

be a time-consuming and costly process, involving precision machining which permanently altering

the duct dynamics. Often a control engineer realizes too late that the chosen con¯guration imposes

inherent performance limitations and a time were options are made few.

Though the result in Proposition 3 holds only in the case of symmetric con¯gurations, our

plant-disturbance alignment approach applies to arbitrary con¯gurations; i.e., one simply evaluates

Ápd(j!) over the possible arrangements. A rule of thumb is to avoid those con¯gurations where

misalignment and peaking in the disturbance gain ratio jPedj
jPmdj occur at the same frequency.

Applying the analysis of SITO systems to active noise control is still a novel approach. There

is more work to be done. We hope that our present work paves a way for future research towards

an e±cient integrated ANC system design.
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