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ON QFT TUNING OF MULTIVARIABLE MU CONTROLLERS1
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ABSTRACT

Optimal control involves feedback problems with explicit plant data and performance criteria for
which a solution is either synthesized or ruled out.  H∞ optimal control is probably the most
renowned technique in this class where the control synthesis procedure involves various iterations
over weightings.  In this paper we argue that the integration of optimal control synthesis and
manual tuning in the Quantitative Feedback Theory (QFT) design environment enables design of
controllers with levels of performance that surpasses what can be achieved using only a single
technique.  Specifically, using a constructive example, we demonstrate that QFT’s open-loop
tuning is can be more transparent than tuning closed-loop weights.  In this example, QFT tunes
the µ controller with the objective of reducing control bandwidth while maintaining robust
performance (µ < 1).
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INTRODUCTION

In the past decade, norm-based optimal control techniques have taken center stage for solving
simple as well as complex control problems in linear, time-invariant feedback systems.  They
allow for plant descriptions that include various classes of norm-bounded uncertainties in
unstructured models.  And handle single-loop and multi-loop problems alike.  The performance
specifications are defined in terms of H∞ norms of closed-loop transfer functions and optimal
control generates the solution if it exists.  Control engineers often use experience and insight into
a particular problem as the design guidelines and prefer use of manual loop shaping as the means
of generating the controller.  This approach has the advantage in that the designer can work
directly with frequency responses.  Moreover, the designer can explicitly invoke practical
constraints that are not easily handled in optimal control formulations such as pole location,
minimal damping ratio, and controller and stability.  And desired modifications about small
frequency bands is transparent using QFT’s open-loop tuning.  Chiefly for such practical issues,
the Quantitative Feedback Theory (QFT) has found a following in the industrial control
community, especially due to that many control problems are of the SISO type.  In QFT, the
quality of the design strongly depends on the skills of the control engineer, with respect to manual
loop shaping.  But it also requires a great deal of experience in complex problems such as
multivariable systems with significant interaction.  Naturally, the availability of an initial design
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would be of great help to the QFT designer.  Based on our extensive experience with both H∞
and QFT design approaches, it appears that by combing both into a single design process, the
control engineer could enjoy the benefits offered by each approach.  To illustrate this point, we
use a multivariable design problem from the µ toolbox (Balas et al., 1994) involving a robust
performance.

Recent work on the relation between QFT(Horowitz, 1992) and H∞ focused on comparing the
resulting designs from the view point of control bandwidth (Chait and Hollot, 1990) and on the
conversion of the QFT problem into an H∞ problem.  Zhao and Jayasuriya (1996, 1998)
formulated a QFT robust tracking problem with real parameter uncertainty as a mixed-
performance H∞ problem.  Using a new robust stability criterion they reduced the inherent
conservatism in H∞ (which treats only complex uncertainty).  While our paper also considers
these two design techniques, its focus and contribution are different.  Specifically, we start with a
µ design and then use multivariable QFT to tune the µ controller with the objective of reducing
control bandwidth while maintaining robust performance (µ < 1).

Towards a Unified Approach.  Considering the weaknesses and strengths of optimal control and
QFT, it seems worthwhile to explore the possibilities of integrating the two approaches into a
single, sequential, design procedure. ).  The argument is two-fold.  First, as knowledgeable users
of µ-synthesis, we have found out that its controllers do not always have all the properties we are
looking for.  Such controllers may exhibit resonances, instability and have exceedingly high
orders.  And in some instances, it is difficult to gain insight into performance weights
modifications necessary to “tune” the controller.  The use of weights with increasing orders for
tuning purposes may not be as transparent as QFT tuning which does not involve weights and is
executed directly on the open-loop frequency response (Steinbuch et al., 1998).  With these
limitations in mind, an optimal controller, in this paper a µ controller, can be viewed as a natural
starting point for a QFT-based tuning.  Second, as knowledgeable users of QFT, we realize the
difficulties in finding an initial design using manual loopshaping.  This is especially acute in
complex multivariable problems.  Hence, our proposed design philosophy draws on the strengths
of both µ-synthesis and QFT techniques.

THE DESIGN PROBLEM

This section describes a design example taken from the µ-analysis and synthesis toolbox (Balas et
al., 1994).  It involves a 2x2-pitch axis controller of an experimental highly maneuverable
airplane, HIMAT.  In the following, we present only the salient quantitative features of the design
problem. The interested reader should refer to Balas et al. (1994) for additional insight into the
problem and the design via the µ technique.  The block diagram of the HIMAT control problem is
shown in Fig. 1.

The nominal plant transfer matrix Gnom corresponding to the airplane dynamics is given in its
state-space data
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This plant exhibits significant non-diagonal dynamics.  The actual plant dynamics is not known
precisely, however, for design purposes it is represented by the family

{ }1stable:)W(IG GGdelGnom <∆∆∆+= ∞,G  where the uncertainty weight Wdel is

given by 10000s
100)50(s
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controller K that achieves nominal closed-loop internal stability and satisfies
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∞
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µ SYNTHESIS

The initial step involved in µ synthesis using the toolbox (Balas et al., 1994) is the
construction of the open-loop interconnection structure followed by the closed-loop linear
fractional transformation.  The design step involves so-called D-K iteration.  After 3 D-K
iterations using dynamic D-scales, a 28th order control was synthesized which achieves
robust performance.  Using truncated balanced realization (Balas et al., 1994), it was
subsequently reduced to 12th order.  As is the case in practically every industrial
implementation, it is desired to reduce the high-frequency control gains as rapidly
possible subject to robust performance constraint.  For this purpose, sensor noise signal
was included (see open-loop interconnection diagram in Fig. 2).

In the next section we show how MIMO QFT can be used to reduce the high frequency
control gains without the addition of sensor noise minimization constraint.  The sensor
noise weight is given by

320s

5622s
n22nn (s)wIwW

+
+

× == .
,

Again, using 3 D-K iterations with dynamic D-scales, a 26th-order controller was synthesized
which achieves robust performance.  Using truncated balanced realization, it was subsequently
reduced to 12th order.  The plots of the structured singular value test, µ tests, for the two designs
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(with and without sensor noise weight) are shown in Fig. 3.  As expected, adding the noise weight
resulted in a lower bandwidth controller (Fig. 4).

At this stage, if we desire further bandwidth reduction, it would appear that the order of the
weights, especially Wn, must be increased to exploit available “flexibility” in the crossover range.
While it is possible to perform tuning this way, the next section present a new tuning approach
that is more transparent for the engineer.  With this in mind, we turn our attention to MIMO QFT.
Specifically, we will demonstrate how MIMO QFT is used to solve the original robust
performance problem while explicitly attempting to minimize high-frequency control gains.

QFT TUNING

The purpose of QFT tuning in this context is to study possible design tradeoffs in this problem
without making explicit modifications to the weights as required in µ synthesis.  The issue of
minimization of the high frequency gain is dealt with in QFT in an indirect way.  The basic idea
is that hard performance specifications (such as sensitivity reduction) are considered only up to
some crossover frequency.  The individual elements of a diagonal controller are designed
sequentially to satisfy the MIMO performance constraints.  Unlike the approach used in optimal
control, the high-frequency responses of the diagonal controllers are typically not constrained a
priori; and are minimized during QFT loopshaping.  We will then compare the QFT's high
frequency gains to those of the µ design.

This QFT design is done as follows.  A diagonal QFT controller, F = diag[f1,f2], is inserted just

before the µ controller K.  The robust stability constraint becomes

1)KFG(IKFGW 1
nomnomdel <+

∞
− , and the robust performance constraint is that

1GKF)(IW 1
P <+

∞
−  is satisfied for each G∈  G.

The technical issue we must deal with now is that the QFT design framework for MIMO systems
is inherently different from norm-based approaches.  In QFT, performance specifications are
placed on each SISO element in the matrix function of interest.  It is impossible for QFT to deal
direclty with norm-based specifications.  However, as we show below, we believe that for the
purpose of controller tuning, it is possible to modify the weights from a norm-based formulation
into the QFT’s framework and still maintain the basic performance requirements.

We first modify the full block uncertainty G∆ considered in (1) as follows.  Consider a block

diagonal structure [ ](s)(s), 21 ΛΛdiag  and approximate the frequency responses of the

families iΛ using an N-point representation of their boundaries

{ } 21i),(jN1n:/N)jsin(n/N)cos(n)(j ii ,,,~ =ωΛ⊆=π+π=ωΛ !  , resulting in an approximated

frequency response set of the uncertainty [ ])(j)(j)(j 21G ωΛωΛ=ω∆ ~,~~
diag .  The approximate plant

family becomes { }stable ),(j)(j:)W(IGG GGGdelGnom ∆ω∆∈ω∆∆+== ~G~ .
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The nominal plant remains unchanged and this approximate plant family consists of (N+1)x(N+1)
members.  Let us now define a new plant P consisting of the original plant G cascaded with the µ-

controller K, P = GK.  The new plant family is { }G~P~ ∈== G:GKP .  With the QFT controller

F, the robust output sensitivity specification becomes P~, ∈<∞ Peachfor1SWP  where S =

(I+PF)-1.  In MIMO QFT, performance specifications are placed on each element of the
sensitivity transfer function matrix.  The norm-based above specification cannot be translated into
this format without conservatism.  However, our focus is to tune the µ controller K so to
minimize its high frequency gains while maintaining its low-frequency performance.  With this in

mind, we suggest the following workaround.  For each P~∈P  we compute the sensitivity with
nominal QFT control (i.e., F = I),

2
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and use it as the baseline frequency response for QFT tuning.  That is, since the µ controller K
already satisfies our performance specification, the magnitude of the µ sensitivity for each plant

in the approximate family 2
mm 1)(N,1,m  ,SW +== !  (we use the notation [ ]

mijm wW = )

is utilized to define the following QFT’s robust performance problem.  With the QFT controller
]f,diag[fF 21=  included, the sensitivity transfer function becomes
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and for each plant in the family P~  we write the sensitivity specification as

2
ijij 1)(N,1,m  1,2,ji,  ,ws

mm
+==≤ !

The idea here is that if we satisfy the above inequalities, or stay near them, the diagonal scaling
created by the QFT controller F will not affect the original norm-based constraint

1GKF)(IW 1
P <+

∞
−  which is met with F = I.  This will hold true as long as tuning is not

expected to radically modify the open-loop responses.   While robust stability of the design is
automatically guaranteed in optimal control, in QFT one must include this constraint explicitly.
Specifically, the robust stability problem is stated as follows.  Assuming no unstable pole/zero
cancellations in the loop, the feedback system is robust stable if the nominal system is stable and

P~∈>ωω+ Peachfor0,))F(jP(jI  or for the approximate plant

2
m 1)(N...,1m0,))F(j(jPI +=>ωω+ , .  Clearly, robust stability with our approximate

plant does not imply robust stability with the original plant even if ∞→N .  However, with
sufficient MIMO stability margins enforced in the QFT tuning, the risk is minimized.  In addition,
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we will analyze the resulting design using µ analysis.  To this end, the QFT robust stability
margin specification takes on the form (Yaniv, 1995)

2
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In the initial tuning step, F =I, and we elect to start with tuning of the first loop.  That is, we fix f2
= 1, and compute QFT bounds for the following set of six algebraic problems which are all
bilinear in f1.

2

fp1
1

fp1
1

2221

2121

1212

1111

1)(N1,...,m

2

2

ws

ws

ws

ws

2
e

m22

1m
e
11

mm

mm

mm

mm

+=




















≤

≤

≤

≤

≤

≤

+

+

, (4)

where have used 21/wmax P = .  Clearly, all the functions in (4) are bilinear in f1.  The QFT

Toolbox (Borghesani et al., 1994) is used to generate the corresponding bounds at a set of
frequencies.  These bounds are then intersected to yield working bounds.  The controller f1 is
then designed interactively using the QFT Toolbox (Borghesani et al., 1994).  To achieve

nominal stability we actually loopshape 10
e
11 fp  with the nominal plant 0

e
11p  corresponding to

G0.  A screen capture of a typical interactive loopshaping environment is shown in Fig. 5.
Specifically, two QFT bounds, the original (f1 = 1) and the tuned nominal loops are shown (in
tuning we used bounds at 20 frequencies which are not shown here for clarity of the figure).  The
effect of a 3rd order f1 on the loop response is highlighted at ω = 500 (see arrow).  Naturally,
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tuning using a higher-order controller can potentially lead to further bandwidth saving, but this
tradeoff is really up the designer to make in a specific design.

After f1 is designed, we proceed to tune f2.  Again, the set of six inequalities (4) is solved to
compute QFT bounds in terms of f2.  Again, to achieve nominal stability we actually loopshape

20
e
22 fp  with the nominal plant 0

e
22p  corresponding to G0.  A screen capture of a typical

interactive loopshaping environment is shown in Fig. 6.  Specifically, two QFT bounds, the
original (f1 = 1) and the tuned nominal loops are shown.  The effect of a 5th order f2 on the loop

response is highlighted at ω = 300 (see arrow).

Because we have been tuning the approximate plant only, at each step we analyze the structured
singular values using the µ toolbox.  As it turns out, using a few QFT iterations, we were able to
find the direction µ changes for small changes in the open-loop response.  This is especially
useful when we tune the response over a “small” frequency band.  That insight is exactly what
makes QFT tuning so powerful.  It is important to note that the QFT performance bounds are not
exact relative to the original, norm-based specifications.  And so, it is feasible that the nominal
loop does not satisfy its bounds, yet the structured singular value is below 1.  This insight is
learned during the QFT tuning/µ analysis tuning cycle.

At each step, the SISO controller was order-reduced (Wortelboer and Bosgra, 1992) using the
QFT Toolbox (Borghesani et al., 1994).  In Figs 5-6, one can observe what QFT can offer in
terms of reducing the high-frequency gain.  While satisfying the low-frequency robust
performance bounds (the line across the Nichols chart), and avoiding the robust stability margins
bound (the closed curve in Nichols chart), one can attempt to reduce high frequency gain by
adding/tuning any number of “far-off” poles.  The designer can tune the values of such poles by
interactively dragging the loop response to the left/down at a specific frequency.  The feasible
limit for such shifts is exactly the QFT bound.  This is a rather straightforward process yet it does
require experience.  The Bode plots of the QFT controller are shown in Fig. 7.  We can observe
that |fi| < 1 (except for narrow band near 20 Hz) with bandwidths below 10 kHz.  Particularly
impressive is the fact the using QFT tuning we were also able to reduce the low-frequency control
gain (i.e., approaching µ = 1).

The final design consists of the cascaded GF controller.  Using truncated balanced realization the
order of GF is reduced to 12.  Figure 8 shows the structured singular values of the 12th-order µ
design (with sensor noise) and the 12th-order µ/QFT design (without noise).  For fair comparison,
the structured singular values for the µ/QFT design were computed using the interconnection with
sensor noise.

Finally, we compare the resulting reduction in the controller high frequency gains between the
two design approaches.  Figure 9 depicts such values for the 12th-order combined QFT/µ design
(without sensor noise), and the 12th-order µ design with sensor noise.  It is interesting to note that
while QFT tuning, we observed that the structured singular values in Fig. 3 were below one, and
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so we used a DC gain of 0.85 in the QFT’s SISO controllers fi.  As seen, the integrated µ/QFT
design satisfies the robust performance with the lowest bandwidth.

A final comment for QFT experts who may wonder about the required complexity of the
controller, it is instructive to inspect the coupling in the µ design.  The Bode plots of the
individual elements in the µ/QFT controller indicate a high-degree of interaction (Fig. 10).  While
it is conceivable that a static decoupler (ω = 0)can be easily designed, the dynamic nature of G in
the range [ ]1001,∈ω  clearly indicates that it will be very difficult to manually design it with the
same ease offered by optimal control.

CONCLUSIONS

In this paper we have shown using a generic, multivariable, robust performance problem, that the
integration of µ-synthesis and QFT tuning led to a controller whose performance levels may not
be achievable if only a single technique was used.  This design approach enjoys the strength of µ-
synthesis in dealing with complex multivariable problems (such as non-square and/or highly
coupled plant) and QFT’s ability to deal directly with plant frequency response plant and easily
tune control response over narrow frequency bands.  Our findings strongly suggest that the
historical academic competition between classical and modern optimal design philosophies
should end.  And it motivates development of new graphical tools that seamlessly implement the
integration of µ-synthesis and QFT tuning.
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