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ABSTRACT

In this paper we focus on the following loop-shaping problem: Given a nominal plant and
QFT bounds, synthesize a controller that achieves closed-loop stability, satisfies the QFT
bounds and has minimum high-frequency gain.  The usual approach to this problem
involves loop shaping in the frequency domain by manipulating the poles and zeroes of
the nominal loop transfer function.  This process now aided by recently-developed
computer-aided design tools, proceeds by trial and error, and its success often depends
heavily on the experience of the loop-shaper.  Thus, for the novice and first-time QFT
users, there is a genuine need for an automatic loop-shaping tool to generate a first-cut
solution.  Clearly, such an automatic process must involve some sort of optimization,
and, while recent results on convex optimization have found fruitful application in other
areas of control design, their immediate usage here is precluded by the inherent non-
convexity of the QFT bounds.  Alternatively, these QFT bounds can be over-bounded by
convex sets, as done in some of the recent approaches to automatic loop-shaping, but this
conservatism can have a strong and adverse effect on meeting the original design
specifications.  With this in mind, we approach the automatic loop-shaping problem by
first stating conditions under which QFT bounds can be dealt with in a non-conservative
fashion using linear inequalities.  We will argue that for a first-cut design, these
conditions are often satisfied in the most critical frequencies of loop-shaping and are
violated in frequency bands where approximation leads to negligible conservatism in the
control design.  These results immediately lead to an automated loop-shaping algorithm
involving only linear programming techniques, which we illustrate via an example.
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1.  INTRODUCTION

The Quantitative Feedback Theory (QFT) method offers a direct, frequency-domain
based design approach for tackling feedback control problems with robust performance
objectives.  In this approach, the plant dynamics may be described by frequency response
data, or by a transfer function with mixed (parametric and non-parametric) uncertainty
models.  One feature that distinguishes QFT from other frequency-domain methods, such
as H∞  and LQG/LTR, is its ability to deal directly with uncertainty models and robust
performance criteria.  This is achieved by translating robust performance specifications
and uncertainty models into so-called QFT bounds.  These bounds, typically displayed on
a Nichols chart-like plot, then serve as a guide for shaping the nominal loop transfer
function which involves the manipulation of gain, poles and zeros.  This design process is
executed efficiently using computer-aided design software, such as the QFT Control
Design MATLAB Toolbox (Borghesani et al., 1995), and is effective for “simple”5

problems.  Nevertheless, QFT designers are often challenged by such control problems
due to a lack of loop-shaping experience, and could benefit from an algorithm that
automatically provides a first-cut solution to the loop-shaping problem.  In addition, an
automatic loop-shaping facility would enhance the capabilities of the expert QFT
designer.  Automatic loop-shaping algorithms have been proposed over the past twenty
years and this paper reports on a new version.

One of the first papers to address the automatic loop-shaping problem is Gera and
Horowitz (1980).  This work used Bode’s gain-phase integral to derive a nominal loop
shape in an iterative fashion.  There was no guarantee of convergence and rational
function approximation was ultimately needed to obtain an analytical expression for the
loop.  This approach was automated in a QFT Toolbox (Ballance and Gawthrop, 1991)
which simplified the iteration process and allowed for higher order approximations of the
integral.  In Thompson and Nwokah (1994), automatic loop-shaping was achieved using
nonlinear programming techniques where the QFT bounds were overbound by disks6  As
with any nonlinear optimization technique, this approach may be sensitive to initial
conditions and fail to converge to a global optimum.  Also, closed-loop stability was not

                                                       
5 The loop-shaping task is challenging when the plant has unstable poles, nonminimum-phase zeros, delays
or a large number of resonances, or, when the control problem involves tradeoff between competing
specifications.
6 To generate these disks, the QFT specifications were converted into standard  H∞  weights on the closed-
loop sensitivity function.  While the resulting QFT bounds are now disks , this conversion clearly results in
design conservatism suggesting an H∞  design.
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assured.  Avoiding these optimization difficulties, Bryant and Halikias (1995) applied
linear programming techniques to the automatic loop-shaping problem.  However, this
comes at the expense of introducing conservatism in describing non-convex QFT bounds
with linear inequalities.  In addition this approach cannot deal with unstable poles and
zeroes in the loop transfer function nor does it guarantee closed-loop stability.  Finally,
Zhao and Jayasuriya (1993) introduced the Youla parameterization to transform a QFT
robust performance problem into a one-dimensional search; but this allows for only one
controller parameter to be automatically designed.

In this paper we provide an automatic loop-shaping algorithm that builds upon the
previously described work.  We pose the loop-shaping problem as a linear program,
which yields a stabilizing controller of prescribed order and minimal hi-frequency gain.
In contrast to Bryant and Halikias (1995), the QFT bounds are tightly described by linear
inequalities.  This is achieved by first posing the QFT problem in terms of the closed-
loop complementary sensitivity function T rather than the nominal loop transfer function
as done in the classical QFT approach.  Then, since these (closed-loop) QFT bounds are
not generally convex, we transform the problem so that they can be exactly described by
linear inequalities.  This transformation constitutes one of the technical novelties of this
paper.  These convex QFT bounds are then evaluated at a finite set of frequencies to form
a set of linear inequalities constraining T.  Next, closed-loop stability is imposed by
fixing the poles of T (to be stable).  Finally, a linear program is solved where the cost
measures hi-frequency controller gain and where the linear constraints (non-
conservatively) represent the closed-loop QFT bounds.  A key limitation of our approach
is that the poles of T are fixed with only the zeros taken as optimization variables.

Finally, we note that in the earliest rigorous investigation, Bailey et al. (1994) compared
the open-loop gain-phase shaping approach (i.e., conventional QFT) with the closed-loop
gain-phase shaping approach (i.e., the basis of our new procedure).  They noted the
difficulty in the latter approach when the corresponding "bounds" are not convex.  And
with the design conservatism related to convexification of such bounds one may question
the utility of the design itself.  However, as we propose in this paper, if the purpose of
automatic loop-shaping is to present the designer with a reasonable initial loop design,
then this approach is merited.  The power of QFT lies in its ability to guide the designer
in gain-phase tuning of the open-loop frequency response especially around the crucial
crossover range.  Indeed, our experience shows that manual tuning using powerful
computer-aided tools (e.g., Borghesani, et al., 1995) can overcome such conservatism.
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This paper is organized as follows.  In the next section we outline the classical QFT loop-
shaping problem and repose it in terms of the closed-loop complementary sensitivity
function T.  We also present our main technical result, which suggests a transformation
under which the resulting closed-loop QFT bounds can be described by linear
inequalities.  In Section 3, we bring these elements together and pose the automatic loop-
shaping problem as a specific linear program.  Finally, in Section 4, we provide an
illustrative example to demonstrate the utility of the proposed algorithm.
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2.  CONVEXITY OF CLOSED-LOOP QFT BOUNDS

In this section we briefly outline the classical QFT problem and introduce the technical
novelty of this paper concerned with the convexity of closed-loop QFT bounds. The
starting point for QFT design is a negative unity feedback system where the plant ( )sP  is
modeled by a family of transfer functions





 ∈∈∈==

++
[20,30]b[1,5],a[1,10],k:P(s)

b)a)(s(s
kP

The feedback problem is to design a controller G(s) such that the closed-loop system is
robust stable and

)[0,,Pallfor1.2,
)PG(j1

)PG(j ∞∈ω∈=≤
ω+

ω P

Ignoring robust stability here, the above algebraic specification can be translated into an
equivalent specification on the frequency response of the nominal open-loop P 0G(jω) (for
some P∈(s)P0 ).  For example, at ω = 100, if P0G(jω) lies outside the region shown in
Figure 1, then the above specification is met (P 0 here corresponds to [k0,a0,b0] =
[1,1,20])  Such regions are called QFT bounds and are typically shown on a Nichols chart
for loop-shaping purposes.  Clearly, this bound is not convex, a fact posing a real
problem in automatic loop-shaping procedures.
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At this point we are ready to formally define QFT bounds.  Consider the bounds at a
single frequency where we can ignore stability aspects and focus on (sets of) complex
numbers.  Let C⊂P  be the closed set (i.e., template) where the open-loop plant is
allowed to vary in; i.e., P∈  P.  Let T denote the closed set that describes the specification
on the complementary sensitivity function T ∈  T.  The design problem amounts to
finding a controller C that leads to

PT ∈∀∈
+

P
PC1

PC (1)

Now introduce the bilinear mapping CC ∈→∈ wzf :

z1
z(z)w
+

== f

and its inverse zw: →g

w1
w(w)z
−

==g

Then,

)(PCf(PC) TT g∈⇔∈

and (1) becomes

PT ∈∀∈ P)(gPC

Let us assume, without loss of generality, that 0 ∉  P.  Then, the above equation is
equivalent to

PT ∈∀∈ P    )(gC P
1

The latter is nothing but

I
P

T
∈

∈
P

P
1 )(C g (2)
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Now, specify a nominal plant P 0.  Then (2) is rewritten as

I
P

T
∈

∈
P

P
P

0 )(CP 0 g (3)

The set on the right-hand-side of (3) is a so-called QFT bound 
0PB ; i.e.,

I
P

TB
∈

≡
P

P
P

P )(0
0

g

Generally speaking, QFT bounds are not necessarily convex sets.  However, as we show
below, by mapping the QFT bounds 

0PB  into bounds on the nominal closed-loop
complementary sensitivity:

CP+1
CP

00
0

0C)(PT =≡ f (4)

convexity can sometimes be achieved and a sufficient condition for convexity can be
derived .  Specifically, the set

( ){ }
00 P00T CP:CP BB ∈≡ f (5)

can be convex even when 
0PB  is not. Then, the QFT loop-shaping task is transformed to

one on T0, i.e.,

00 T0P0 TCP BB ∈⇔∈

The following result gives a sufficient condition for 
0TB  to be convex.

Theorem 1.  Assume C⊂T  is a closed disk centered at the origin. If there exists a
complex number c such that

∉ 1- )T(
P
c g         ∈∀ P P (6)
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then 
0TB  is a convex set by selecting P0=c.

Proof:  Because the set T is a closed disk centered at the origin and g is bilinear, then

P
c g(T) is either a disk or the complement of a disk.  Moreover, since ∉ 1- )T(

P
c g , for all

∈P P, then 
P
c g(T) does not contain the critical point of the bilinear map f.  Hence,




 )(
P
c Tgf  is a closed disk for any ∈P P.

Now taking P0 = c, we have

0TB I
P∈

≡
P




 )(
P
c Tgf

Finally, since the intersection set of convex sets is itself a convex set, we have shown that

0TB is convex. �

Next, we derive an alternative result based on Nichols charts and QFT templates, which
reduces verification of (6) to a simple matter of graphical observation.  Before we present
this result, we require some notation and a definition.

Recall that the Nichols chart is a modified polar representation of the complex plane
where each complex number iyxv +=  has polar representation φ= irv e .  The
corresponding point on the Nichols chart is )( ρφ,  where r  20 log=ρ .  The map

),(y)(x,:(v) ρφ→n

transforms the Cartesian plane into the Nichols chart.

Definition 1: Let Q⊂ C be a closed subset of the Nichols chart. Then Q
~

 is the symmetric
set of Q if

1) Given Q∈x , there exists a ∈y Q
~

 such that ),(nyx 01−=+ .
2) Given y ∈ Q

~
, there exists a Q∈x  such that ),(nyx 01−=+ .
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If Q is a subset of the Nichols chart, let Q  denote its set complement. The following
theorem gives a sufficient condition for convexity of 

0TB  that can be visually verified in
the Nichols chart.

Theorem 2.  Let G denote the symmetric set of ))(g( Tn . If there exists a finite complex
number c such that

n(c)-n(P)⊆ G (7)

then 
0TB  is a convex set.

Proof:  First,

PTT ∈∀


 P           ))((+(P)-(c) =)(
P
c gnnngn

so that

PTT ∈∀


 P           ))((+(P)-(c) =)(
P
c gnnngn (8)

Now, assume (7) holds.  From Definition 1 and (8) it follows that

∈−  1,0)(n PT ∈∀


 ) P           g(
P
c

n

Thus

∉−  1,0)(n PT ∈∀


 ) P          g(
P
c

n

Consequently,

∉ 1- )T(
P
c g            ∈∀ P P

and using Theorem 1 
0TB  is a convex set. �
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Finally, in certain cases we can simplify the verification of condition (7).  Indeed, if
))(( Tgn  is symmetric about the Nichols chart line { }∞<ρ<∞−−=φρφ  ,180:),( o , then

(7) is equivalent to

n(P)- n(c) ⊆  ))(( Tgn (9)

We summarize this result in the following corollary.

Corollary 1. Assume ))(( Tgn  is symmetric about the Nichols chart line
{ }∞<ρ<∞−−=φρφ  ,180:),( o , then 

0TB  is a convex set if (9) holds.

We illustrate our results using a simple example adapted from Borghesani et al., (1995).
The plant family is defined by :







 ∈∈∈ [20,30]b[1,5],a[1,10],k:

b)+a)(s+(s
k

In Fig 2, we show the Nichols chart plant templates n(P) at 0.1 and 100 rad/sec.  The
specification T is the set { }051.T:T ≤  which is a disk.  In the Nichols chart, the
boundary of (g(T)) is the classic M-circle.  The area inside the M-circle is exactly

))(( Tgn  which is symmetric about the Nichols chart line { }∞<ρ<∞−−=φρφ  ,180:),( o

so Corollary 1 can be used to establish the convexity of 
0TB .

To do this, we will determine if condition (9) is satisfied.  In Fig 2 we illustrate possible
translations of  n(P) at 0.1 and 100 rad/sec. Specifically, we show that by proper choice of
the parameter c in Theorem 1, n(P) at 100 rad/sec can be translated to inside the M-circle,
which is exactly ))(( Tgn .  The choice of c = 9.0142e-5+i3.203e-5 corresponding to the
nominal plant P 0  with k = 1, b = 30, and a = 5 (P 0 = c), satisfies condition (9) and the
bound 

0TB  at 100 rad/sec is indeed convex (see Fig 3).

It is important to understand that this choice of P 0 is nontrivial.  In many QFT
publications, it is recommended that the nominal plant be selected from the boundary of
the template n(P) ((Rodrigues, et. al, 1997).  But we follow this reasoning, there may be
no such P0 leading to convex bound.  In general, the optimal choice is the plant whose
response lies inside the template centered near its lower end.  In this example, n(P) easily
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fits in ))(( Tgn  implying that we have greater flexibility in selecting the parameter c.
However, taking another P0 with k = 5, b = 25, a = 3 results in a nonconvex 

0TB (Fig. 4).
On the other hand, the n(P) at 0.1 rad/sec can not be translated to inside the M-circle
implying that condition (9) cannot be satisfied.  Indeed, Fig. 5 shows 

0TB  to be
nonconvex.  However, at the low frequency, the overriding specification is typically the
high gain type.  High-gain specifications are the focus of the next result.

-300 -250 -200 -150 -100 -50 0
-100

-80

-60

-40

-20

0

20

40

template at 0.1rad/sec

template at 100rad/sec

Phase

M
ag
nit
ud
e
(d

M-circle

 translated template

Figure 2: Templates at 0. 1 and 100 rad/sec and ))(( Tgn



12

-0.2 0 0.2 0.4 0.6 0.8 1 1.2
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Real

Im
ag

e

Figure 3: 
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Figure 5: 
0TB  at 0. 1 rad/sec in the complex plane with P 0 = 5+0.1i

Figure 6: ))(( Tgn  for the specification 2850.S ≤

For example, a sensitivity reduction specification requiring high-gain is

1S <α≤ (10)
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(recall 1=+ TS ). We have following result about the convexity of the corresponding
QFT bound 

0TB .

Corollary 2:  For the sensitivity reduction specification (10), there always exists a
nominal plant 0P  such that 

0TB  is convex.

Proof:  The sensitivity reduction specification (10) is equivalent to

1T1 <α≤−

Since T is a disk centered at 1 with radius less than 1, ))(( Tgn is a half plane as shown in
Fig 6.  It then follows that ))(( Tgn  is also a half plane.  Consequently, for any plant
template n(P), condition (9) is automatically satisfied.  From Corollary 1, we know that
there exists a nominal plant P 0 such that 

0TB  is convex. �

In the next section we present a new linear programming algorithm for automatic loop-
shaping of QFT controllers.  Following results from this section, the algorithm work with
closed-loop QFT bounds.  It does not yet employ Theorem 1 (work in progress).  Its
guarantee of internal stability and reduced need for crude approximation of (open-loop)
non-convex QFT bounds, constitute its advantage over present automatic loop-shaping
algorithms.
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AUTOMATIC LOOP-SHAPING

In this section we formulate automatic loop-shaping of QFT controllers as a linear
programming problem.

Linear Programming. Given a set of parameters { }nxxxx ,,21 K,= , a linear objective
function f and a linear constraint function g, the problem of finding the optimal
parameters x is stated as

0(x)tosubject

(x)minimize

≤
∈

g

f
nRx

Linear programming problems can be solved numerically with great efficiency and there
exists a large library of software for this purpose (e.g., Branch and Grace, 1996).  In a
more general setting for control, Boyd and Vandenberghe, (1995) used convex
optimization.  Recently, Linear Matrix Inequalities (LMIs) have been gaining interest in
the control community since many control problems can be formulated as LMIs, and
LMIs can be solved exactly by efficient convex optimization algorithms. (e.g., Gahinet et
al., 1995).

Our Problem setup.  The first issue to be addressed is the convexity of the bounds.  The
results present in the previous section can be used to convexify the bounds (if possible).
In such cases, the choice of the nominal plant may not be arbitrary.  In cases where the
bound 

0TB  cannot be made convex, we could weaken the specification and use a convex
set to approximate it.  Alternatively we could strengthen the specification by replacing
the bound with the maximum volume ellipsoid contained within it using available
software (Veres, 1996).  The decision can be made online within QFT’s loop-shaping
environment.  This ellipsoid is then approximated by a set of linear inequalities.

Let the transfer function of T(s) to be synthesized be described by

                                    T(s)
(s p )

s

(s c s d )
j

jj 1

n
k k

2
k kk 1

m
=

+
+ +

+ += =
∑ ∑α β γ                                            (11)
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Note that while T(s) is linear in its residues ( α,β,γ), it is not linear in its denominator
coefficients (or poles).  Hence, when (11) is solved using linear programming, the
denominator in (11) must be defined a priori.  And even though the set of feasible
denominators may be large, its selection for linear programming is almost random.  This
appears to be the single most overriding limitation of our automatic loop-shaping
procedure.  An expert system for selecting this denominator which is based on the
authors' past experiences with manual loop-shaping has been incorporated into the
algorithms and shown great promise.

Relative Degree.  In QFT, it is customary to design only strictly proper controllers
(following Horowitz's teachings).  In this context, and without loss of generality, we
focus on the class of controllers whose relative degree d(C) is at least one (the difference
between highest polynomial orders of its denominator and numerator).  To insure d(C) ≥
1, d(T) must be constrained.  Given that d(P 0) = r, the requirement on d(T) is (e.g.,
Section 8.1.3., Helton and Merino, 1994) requires a modification of the above T(s) to

T(s)
a

(s a )
 

(s p )
s

(s c s d )
i

ii 1

r
j

jj 1

n
k k

2
k kk 1

m
=

+ +
+ +

+ +













= = =
∏ ∑ ∑α β γ (12)

where the positive ai are defined a priori.

Internal Stability.  To guarantee internal stability, we must guarantee not only stability
of T0 but also that the underlying controller C does not share any RHP poles or zeros
with the plant family P.  One way to achieve this is to add interpolation constraints on
T(s) at the RHP poles and zeros of the P0.  These constraints are given in the following
result (Theorem 11, Chap 8, Helton and Merino, 1994).

Theorem.  Let rl (l = 1,… ,s) denote the poles and z l (l = 1,… ,t) denote the zeros of the
plant P in the closed RHP, so that these poles and zeros have multiplicity n l (l = 1,… ,s)
and ml (l = 1,… ,t) respectively.  If T is internally stable and d(T) > d(P), then T must
satisfy the following interpolation conditions

T( ) 1, T ( ) 0, , T ( ) 0   (l 1, , )
T(z ) 0, T (z ) 0, , T (z ) 0   (l 1, , )

l
(1)

l
(n 1)

l

l
(1)

l
(m 1)

l

l

l

ρ ρ ρ= = = =
= = = =






−

−
K K
K K

s
t

(13)
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QFT’s Optimality Criterion.  Horowitz (1973) defines the optimal QFT controller as
the stabilizing controller satisfying its bounds and has minimum high-frequency gain k C
where

C(s)
k

s
d(C) q

s
C
q→ ∞ →  =,

is an optimal QFT controller.  Define from (12)

T(s)
k

s
d(T) v

s
T
v→ ∞ →  =, (14)

while from (4)

T (s)
k
s

k

s
d(P ) e0 s

C
q

P
e 0
0

→ ∞ →  =,

The controller C is recovered from T(s) in (12) via

C =
1
P

T
1 - T0

(15)

then, since k P0 is fixed

min k min kT C→

And since kT is linear in ( α,β,γ), the QFT’s criterion of optimality can be elegantly
incorporated in a linear programming formulation.

Controller Order.  The order of C obtained using (13) is equal to the sum of the order of
P0 and the degrees of freedom in the linear programming formulation n+m in (12).  This
well-known relation is understood to be the price that must be paid for insuring internal
stability.  Naturally, stable pole/zero cancellations may occur in (13) reducing that order.
Here order denotes inter power of the highest-order coefficient in the denominator
polynomial.
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Summary.  Before proceeding with numerical examples, let us review the computational
steps in our linear program:

1. Convert the open-loop bounds into closed-loop bounds.
2. Check for convexity.  If not, either:

• Compute convex hull, or
• Compute maximum volume inner ellipsoid.

3. Compute a set of linear inequalities for each bound.
4. Define the poles of T(s) given user defined order.
5. Compute the matrices A and B for the linear inequalities Ax < B from steps 3-4 and

(12).
6. Apply internal stability constraint (13) to append rows to A and b.
7. Using the high-frequency gain minimization constraint (14) append a row to A and

b.  For numerical simplification, we approximate the high-frequency gain by that of
T at a very high frequency (where its magnitude is monotonic with respect to
frequency).

8. Solve the linear program.  If there is no solution allow user to either
• Select a new set of poles, or
• Increase order of T.

9. If the problem is solved, extract the controller from (15).

In our program, we have yet to implement the result of Theorem 1 in order to arrive at
convex bounds via proper choice of the nominal plant.  As it turns out, when the
problematic bounds were converted into closed-loop bounds, they were "near" convex.
And so, in step 2 we simply computed their convex hull of 

0TB .  Programming Theorem
1 is left for future work.
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AN EXAMPLE

Consider Example 2 from Toolbox Borghesani et al., (1995), with a unity feedback
control system and a parametric uncertain plant model described by

{ }[1,10]a[1,10],k:=P(s)=
a)s(s

ka ∈∈+P

The problem involves design of a controller C and a pre-filter F to achieve robust
stability, a ma rgin specification

0Pallfor21
))C(jP(j+1

))C(jP(j ≥ω∈≤ωω
ωω ,,. P

and a tracking specification

[0,10]Pallfor),(T)F(j)(T U))C(jP(j1
))C(jP(j

L ∈ω∈ω≤ω≤ω ωω+
ωω P,

where

120+)828(j+)17(j+)(j
120

U
19.752+)4(j+)(j

0)30.6854(j
L 232 =)(T=)(T

ωωωωω
+ω ωω ,

Here, we are concerned only with the design of the controller C.  The QFT bounds at ω =
[0.01,0.1,0.5,1,2,100] are shown in Figure 7.  Also shown are the nominal loop L 0(jω)
with unity controller (L 0(jω) = P0(jω)) and the automatically synthesized controller in
solid and dashed lines, respectively (the circles ‘o’ denote the response at the above
frequencies).
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Figure 7:  Uncompensated and “optimally” compensated nominal loops with QFT bounds

The optimality of the design is demonstrated in that the loop lies right on the three low-
frequency, high-gain type bounds (optimality here is with respect to the linear program
setup).  It is conceivable that with a different choice of poles of T(s) in (12), an even
lower high-frequency gain can be achieved.  All computation were carried using in the
QFT Control Design MATLAB Toolbox (Borghesani et al., 1995).  A special GUI was
developed for automatic loop-shaping within the Toolbox’s loop-shaping function
lpshape.  This GUI allows for rapid iteration over the values of the poles of T(s) and the
desired order of C(s).  The design in Figure 6 employed three degrees of freedom (i.e.,
n+m = 3).  Using more degrees of freedom, a lower high-frequency gain in C may be
realized.  For example, Figure 8 compares the above design (n+m = 3) and a more
complex design (n+m = 7), shown in a solid line and dashed line, respectively.
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Figure 8:  Two “optimally” compensated nominal loops of varying degrees

It is interesting to note that while the second design has a lower high-frequency gain, the
loop response violates the margin bounds at a frequency range where bounds are not
defined.  The optimization scheme cannot guarantee any level of performance at
frequencies not included in the formulation.  In practice, this does not appear to be a
problem since one can add constrains (i.e., bounds) at any number of frequencies.  In
addition, in this example we did not attempt to exploit the Theorems and used the
conservative step of convexifying the two margin-type bounds.  However, it should be
obvious that given any of the two designs in Figure 8, the designer can focus solely on
fine tune in the crossover range.  The potential difficulty of obtaining an initial design is
removed and the associated cost of conservatism can be greatly reduced using tuning.

Discussion.  Our linear programming based procedure has been applied successfully to a
number of design problems.  While our Theorems constitute an important contribution to
the understanding of the convexity of QFT bounds, crucial for any linear program, the
single limiting factor of our methodology is the need to a priori fix the poles of T(s).  It is
important to note that the use of automatic loop-shaping in QFT should not be considered
the end game.  Such a step should be viewed as the initial design to be used by the
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designer for computer-aided gain-phase tuning, a procedure exploiting the full power of
QFT.
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CONCLUSIONS

We have presented a new technique for automatic loop-shaping in QFT.  It is based on a
linear programming formulation, and by translating the open-loop bounds into certain
closed-loop bounds it avoids some of the limitations inherent in previous techniques.  In
addition, QFT’s optimality criterion can elegantly be included in this formulation.  A key
advantage of this approach is that it provides a definite answer whether a solution exists
once the poles and order of T(s) are fixed, and such a solution can be found using
efficient numerical algorithms.  A sufficient condition for the convexity of the closed-
loop QFT bounds is given.  While our new procedure is applicable to a large class of
problems, further work is required to remove the need to a priori fix the poles of T(s).
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