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Abstract

This report provides technical details missing from the INFOCOMM ‘02 paper [1]. The
details are related to the design and analysis of the control system.



1 Model

Our starting point is the fluid-flow model developed in [2] for modeling TCP flows and AQM
routers. In this section we will extend this model to account for two-color marking at the network
edge and multi-level active queue management (AQM) running at the core. To begin, we assume a
single edge router serving m sets of aggregate flows with each having Ni identical TCP flows. Each
aggregate has a token bucket with rate Ai and size bi >> 1. The aggregation of these TCP flows
feed a core router with link capacity C. At time t > 0, this router has queue length q(t). At time
t > 0, each TCP flow is characterized by its window size Wi(t) and average round-trip time

Ri(t)
4
= Ti +

q(t)
C

where Ti is the propagation delay. The sending rate ri of an edge is

ri =
NiWi(t)
Ri(t)

.

The fluid flow model is described by m + 1 coupled differential equations; one equation for each of
the m TCP window dynamics and one for the AQM router. The differential equation for the AQM
router is given by

dq(t)
dt

= −C +
m∑

i=1

ri (1)

while each TCP window satisfies
dWi(t)

dt
=

1
Ri(t)

− Wi(t)Wi(t−Ri(t))
2Ri(t−Ri(t))

pi(t−Ri(t)) (2)

where pi(t) denotes the probability that a mark is generated for this aggregate flow.
To finish up, we model the color-marking process at the i-th edge and the multi-AQM action

at the core. To model coloring, we let fg
i (t) be the fraction of fluid marked green; i.e.,

fg
i (t) = min

{
1,

Ai(t)
ri(t)

}

and 1 − fg
i (t) the red fraction. At the core, we let pg(t) and pr(t) denote the probabilities that

marks are generated for the green and red fluids, respectively.1 Consistent with Diffserv, we assume
that 0 ≤ pg(t) < pr(t) ≤ 1. Probability pi(t) is then related to the green and red marks by

pi(t) = fg
i (t)pg(t) + (1− fg

i (t))pr(t).

Let r̃i denote the minimum guaranteed sending rate (MGR) for the i-th edge (aggregate). We
say that the router is over-provisioned if

∑m
i=1 r̃i ≤ C and under-provisioned if

∑m
i=1 r̃i > C. Last,

we say that it is exactly-provisioned if
∑m

i=1 r̃i = C. The objective of this paper is to develop
control strategies at both the core and edges to ensure that the edge sending rates ri (1 ≤ i ≤ m)
meet or exceed their respective MGRs when the system is over-provisioned. In the next section we
address the steady-state feasibility problem; namely, determine whether values exist for {fg

i } and
[pg, pr] such that the sending rates meet the MGRs

1More precisely, marks are embedded in the fluid as a time varying Poisson process, and the product of pg and pr

with the green and red fluid throughputs respectively determine the intensity of this Poisson process
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2 An Architecture for Providing Minimum Throughputs

The purpose of this section is to suggest control architectures for realizing the potential of DiffServ.
These controllers act upon measured send rates ri and queue length q to produce updated values
of bucket rates Ai and marking probabilities pr and pg. Finally, before delving into the structure
and design of such controllers, it is worthwhile to note that this theorem also identifies networks
that cannot achieve a given set of MGRs; regardless of control scheme.

We now again consider the system of nonlinear differential equations written explicitly in terms
of the bucket rate Ai:

q̇ = −C +
m∑

i=1

NiWi(t)
Ri(t)

4
= f(q,Wi, pg, pr, Ai);

Ẇi =
1

Ri(t)
− Wi(t)Wi(t−Ri(t))

2Ri(t−Ri(t))
pi(t)

4
= gi(q,Wi, pg, pr, Ai)

where

pi(t) =
(

Ai

ri(t)
pg(t−Ri(t))+ (1− Ai

ri(t)
)pr(t−Ri(t))

)
.

We follow the same design philosophy used in [4] and derive controllers based on linearized dynamics.
At an operating point (q,Wi, pg, pr, Ai) we have

0 = −C +
m∑

i=1

NiWi

Ri
;

0 = 1− 0.5
(

Ai

ri
pg + (1− Ai

ri
)pr

)
W 2

i ;

Ri = Tpi +
q

C
.

In the linearization process we make two approximation. First, we ignore the delay R in the term
W (t−R)/R(t−R) and secondly, assume that min{1, Ai

ri
} = Ai

ri
. Linearization about the operating

point gives

δ̇q(t) =
m∑

i=1

∂f

∂Wi
δWi(t);

˙δWi(t) =
∂gi

∂Wi
δWi(t) +

∂gi

∂pg
δpg(t−Ri) +

∂gi

∂pr
δpr(t−Ri) +

∂gi

∂Ai
δAi(t)

where

δq ≡ q(t)− q
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δW ≡ W (t)− w

δpg ≡ pg(t)− pg

δpr ≡ pr(t)− pr

δAi ≡ Ai(t)−Ai.

The partial, evaluated at the operating point are:

∂f

∂q
= −

m∑

i=1

ri

CRi

∂f

∂Wi
=

Ni

Ri

∂gi

∂Wi
= − Ai

2Ni
(pg − pr)− Wi

Ri
pr

∂gi

∂pr
=

WiAi

2Ni
− W 2

i

2Ri

∂gi

∂pg
= −AiWi

2Ni

∂gi

∂Ai
= − Wi

2Ni
(pg − pr).

Taking the Laplace transform of the linearized equations yields

δWi(s) =
∂g
∂Ai

s− ∂g
∂Wi

δAi(s) +
∂g
∂pg

s− ∂g
∂Wi

e−sRiδpg(s) +

∂g
∂pr

s− ∂g
∂Wi

e−sRiδpr(s)

δq(s) =
m∑

i=1

∂f
∂Wi

s− ∂f
∂q

δWi(s).

These equations form the block diagram of the open-loop network shown in Figure 1.

2.1 Active Rate Management (ARM)

Similar to the introduction of the AQM in [4], we propose a feedback structure around the token
bucket termed ARM. The need for this feedback is due to the result from [2] which showed that the
resulting throughput may not be equal to the token bucket rate. The purpose of ARM is to regulate
the token bucket rate Ai such that ri ≥ r̃i if capacity is available. Since our ARM compares an
aggregate’s sending rate to its bucket rate, it is necessary to construct an estimate for this sending
rate. We follow the TSW (time slice window) procedure which consists of the following. The send
rate is computed by measuring the number of sent packets over a fixed time period T . This value
is then smooth by a low-pass filter. A fluid model for this dynamics is given by:

F (s) =
a

s + a
e−sTTSW

For this purpose, we introduce the feedback structure as shown in Fig. 2.
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Figure 1: Block diagram of an open-loop DiffServ network.

2.2 The Multi-PI AQM

In a Diffserv network we modify the standard PI AQM by introducing two set points for the queue,
qg
ref and qr

ref as shown in Fig. 3. In an under-provisioned case, q must converge to qg
ref , otherwise

to qg
ref or qr

ref . The marking probabilities, pg and pr, for the green and red fluid, respectively, are
computed by the two AQM PI controllers, AQMg(s) and AQMr(s). To this end, we use the same
controller in both loops, that is, AQM(s) = AQMg(s) = AQMr(s).

2.3 The Diffserv Network

The combined ARM/AQM Diffserv network is shown in Fig. 4. For control analysis and design,
we model this network in a standard block diagram format as shown in Fig. 5. At equilibrium, if
the network is under- or exact-subscribed then pg = 0 and 0 < pr < 1, and if over-subscribed then
pr = 1 and pg > 0. The plant, a matrix transfer function, becomes square by taking one of these
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Figure 2: The ARM control system.

two forms:



δW1(s)
...

δWm(s)
δq(s)


 = P (s)




δA1(s)
...

δAm(s)
δpr(s)


 , q = qref,r, pr = 0, pg = δpg = 0

or 


δW1(s)
...

δWm(s)
δq(s)


 = P (s)




δA1(s)
...

δAm(s)
δpg(s)


 , q = qref,g, pr = 1, δpr = 0, pg = 0;

For example, in a single marking edge with 3 aggregates and pg = 0:

P (s) =




∂g1
∂A1

s− ∂g1
∂W1

0 0
∂g1
∂pr

s− ∂g1
∂W1

e−sR1

0
∂g2
∂A2

s− ∂g2
∂W2

0
∂g2
∂pr

s− ∂g2
∂W2

e−sR2

0 0
∂g3
∂A3

s− ∂g3
∂W3

∂g3
∂pr

s− ∂g3
∂W3

e−sR3

∂f
∂W1

s− ∂f
∂q

∂g1
∂A1

s− ∂g1
∂W1

∂f
∂W2

s− ∂f
∂q

∂g2
∂A2

s− ∂g2
∂W2

∂f
∂W3

s− ∂f
∂q

∂g3
∂A3

s− ∂g3
∂W3

∂f
∂W1

s− ∂f
∂q

∂g1
∂pr

e−sR1

s− ∂g1
∂W1

+
∂f

∂W2

s− ∂f
∂q

∂g2
∂pr

e−sR2

s− ∂g2
∂W2

+
∂f

∂W3

s− ∂f
∂q

∂g3
∂pr

e−sR3

s− ∂g3
∂W3




Since the controlled variable is send rate, the actual plant is described by

PT (s) =

[
diag

[
N1
R1

, . . . , Nm
Rm

]
0m×1

01×m 1

]
P (s)

The controller reflecting a single effective loop (either for red or green packets) is

C(s) =
[

diag [CARM1(s), . . . , CARMm(s)] 0m×1

01×m −CAQM (s)

]
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Figure 3: The multi-level AQM control system.

Specifically, the AQM controller is the same PI-type introduced in [4] with an added roll-off

CAQM (s) =
kaqm( s

zaqm
+ 1)

s( s
paqm

+ 1)

whereas the ARM controller has similar simplicity with an added roll-off

CARM (s) =
karm( s

zarm
+ 1)

s( s
parm

+ 1)

Finally, the rate estimator H is given by

H(s) =
[

diag[F (s)]m×m 0m×1

01×m 1

]

3 Stability Analysis

To verify validity of the fluid model and feasibility of our new ARM/AQM Diffserv paradigm, we
constructed a network consisting of three set of senders, each served by a marking edge with a token
bucket. These edges feed into a congested core with differentiation ability. The propagation delays
Tpi are all uniform in the ranges: Tp1 ∈ [30−50] msec, Tp2 ∈ [15−25] msec and Tp3 ∈ [0−10] msec.
Each sender consists of ni FTP flows, all starting uniformly in [0, 50] sec, with N1 = 35, N2 = 30
and N3 = 25. The Diffserv core queue has a buffer size of 800 packets, capacity of C = 4500 pkt/sec
and ECN marking enabled. We used an average packet size of 500 Bytes.
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Figure 4: The combined ARM/AQM Diffserv network.

Since at this stage we are only interested in feasibility, no attempt is made at optimizing the
controller. In fact, we simply adapt the same AQM controller from [4] which was designed for
similar network parameters:

CAQM (s) =
9.6× 10−6( s

0.53 + 1)
s

This controller is used for both green and red flows. Note that the integrator’s output, the marking
probability (pr or pg), was limited to [0,1] to avoid windup. The set points for the red and green
controllers were qr

ref = 100 and qg
ref = 250 packets. The idea behind this choice was to minimize

the possibility of the queue oscillating between these points due to transients.
The ARM controller used for each aggregate has a similar structure to the above, but with

different parameters to reflect the different dynamics of the send window and token bucket:

CARM (s) =
0.25( s

0.1 + 1)
s(s + 1)

The specific parameters were used based on empirical data and our design experience.
These controllers were discretized with a sampling rate of 37.5 Hz. This rate is even slower

than the one suggested in [4] making implementation possibly cheaper. This rate implies that 100
packets will pass the queue in between two sampling instances. The resolution for implementing
marking or dropping packets is therefore 1%. This resolution is far finer that what is typically
found RED AQMs, and is 10 times finer than the one in [4]. The implication is that we will achieve
more accurate marking/dropping during transients.
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Figure 5: A block diagram of the ARM/AQM Diffserv control system.

The sending rate estimator used the TSW algorithm with a TTSW = 1 seconds time slice. This
was smoothed used a first-order, low-pass filter with a corner frequency of a = 1 rad/sec.

The closed-loop matrix transfer function T (s)



δr1(s)
δr2(s)
δr3(s)
δq(s)


 = T (s)




δr̃1(s)
δr̃2(s)
δr̃3(s)
δp(s)




is given by
T (s) .= PT (s)C(s)(I + PT (s)C(s)H(s))−1

where I denotes a 3× 3 identity matrix.
Since the queue level at equilibrium can be either 100 or 250 packets, stability should be analyzed

around each equilibrium point. There’re several techniques available for this purpose: (1) state-
space formulation where we study the eigenvalues of the closed-loop T (s), (2) modern optimal
control techniques such as mu-analysis, and (3) classical frequency domain ideas. The first two
would require approximation of the pure time delay. However, we chose to use the third because we
are interested only in quick analysis which is especially suited for a decentralized control scheme.

To evaluate stability of our system at a queue operating point of 100 packets, we ran a simulation.
The desired rates were MGR1 = 2000,MGR2 = 500,MGR3 = 1250. Since we have an over-
provisioned system, the actual rates at equilibrium are r1 = 2000, r2 = 1216, r3 = 1284. The
generalized Nyquist stability criterion [6] says that this open-loop stable system is closed-loop
stable if the origin is not encircled by the Nyquist plot of det(I +PttCH(s)), s ∈ Γ, where Γ is the
Nyquist contour with an appropriate indentation around the origin due to the integrator in CAQM .
The Nyquist plots corresponding to various propagation delays in the ranges Tp1 ∈ [30− 50] msec,
Tp2 ∈ [15 − 25] msec and Tp3 ∈ [0 − 10] msec, are shown in Figure 6. No encirclements implies
closed-loop stability. A proper design of this decentralized control system can executed using the
multivariable stability margins ideas in [5].
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Figure 6: Plots of det(I + PT CH(s), s ∈ Γ for various propagation delays.
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