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Abstract
This technical note includes lengthy technical details referred to by our various

DiffServ papers.

1 Preliminaries

The DiffServ network under consideration run TCP RENO, uses a multi-PI AQM for marking
at the core and token bucket for coloring at the edges (see later papers in this URL for fluid
flow modelling details). The network relations at equilibrium are given by:

2(1− pi)

pi

= W 2
i

pi = (1− fgi)pr + fgipg

where Wi denotes the window size of a generic flow within the source aggregate, pi is the
source’s apparent marking probability, and pg and pr are the green and red packet marking
probabilities at the differentiating core. The source aggregate rate is

xi = α−1
i Wi

where
αi =

τi

ηi

where τi denotes the sources round trip time and ηi is the number of flows comprising the
source (i.e., load factor). In a token bucket setup, the fraction of packets colored green is
computed from (A denotes bucket rate and r denotes aggregate send rate)

fgi = min

{
1,

Ai

xi

}
∈ [0, 1].
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From the window equation, the source rate is related to the marking probability as follows

xi = α−1
i

√
2

pi

− 2.

Before we proceed with the fixed point problem, we describe a limitation of the current
leaky bucket implementation. The present implementation of leaky buckets (see fgi relation
above) often forces the equilibrium queue level to be at the green set-point even at an exact-
provisioned network. Since the green set-point is above the red set-point, so is the queuing
delay. The reason for this is as follows. In an exact-provisioned case, Theorem 2 below shows
that all sources exactly meet their target xi. In certain network settings the necessary token
bucket rate of source i, Ai, is such that Ai ≥ xi giving fgi = 1. Hence, the lack of red packets
in this source implies that the queue must settle at the green set-point.

We formalize the above discussion in the context of both PI-ARM and multi-level PI-
AQM controllers. The result is presented without proof.

Lemma 1: If a PI-ARM is used, then

{
xi < xi ⇒ Ai →∞ (fgi = 1)
xi > xi ⇒ Ai = 0 (fgi = 0)

.

Moreover, Let qred and qgreen denote the set-points for the multi-level PI-AQM. We have





pr < 1 ⇒ pg = 0 and q0 = qred

pr = 1 ⇒
{

pg > 0 and q0 = qgreen, or
pg = 0 and qred ≤ q0 < qgreen

.

2

1.1 Exact-Provisioned Case

Let the number of sources with target rates be n. The core capacity is denoted by C.

Theorem 2: If
n∑

i=1

xi = C

then
xi = xi, i = 1, . . . , n.

Proof: Proceeding by contradiction, suppose that xi∗ > xi∗ for some i∗ ∈ {1, 2, . . . , n}.
Then from Lemma 1 Ai∗ = 0, hence fri∗ = 1. Thus, pr < 1 which in turn implies, using
Lemma 1, that pg = 0. Also

∑
i=1,...,n xi = C implies that xî < xî for some î 6= i∗. But, from
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Lemma 1, xî − xî < 0 produces Aî = ∞, or fgî = 1. Since pg = 0, then xî →∞, which is a
contradiction. Hence, no source rate lags or exceeds its target rate. 2

The equilibrium point may not be unique and the following scenarios are possible. If

1 ≥ pr > max
i∈[1,...,n]

2α−2
i

x2
i − 2α−2

i

then due to the optimization nature of TCP RENO (reported in several articles), the queue
will settle at the red set-point qred which is the minimal cost. However, if pr = 1 is not
sufficient to regulate rates to their targets, the link will need to increase cost. This can come
in the form of increased queuing delay. In this instance, qred < q < qgreen is feasible if

1 > max
i∈[1,...,n]

2α−2
i

x2
i − 2α−2

i

where the increased queuing delay is included in τi. If this is not feasible, the queue will
settle at its highest possible level which is the green set-point qgreen. Again, due to the
implicit optimization, it follows that

pg = max
i∈[1,...,n]

2α2
i

x2
i − 2α−2

i

.

2

1.2 Over-Provisioned Case

Without loss of generality we assume that the sources are ordered such that

α1x1 ≥ α2x2 ≥ . . . ≥ αnxn. (1)

Before we present our main result, we need the following intermediate result.

Lemma 3: If
n∑

i=1

x1 < C (2)

then:

(i) The queue’s state at equilibrium is qo = qred and pr < 1.

(ii) All sources achieve their target rates at the least:

xi ≥ xi, i = 1, . . . , n.

(iii) If in addition to (2), xi∗ > xi∗ for some i∗ ∈ {1, . . . , n− 1}, then

xi > xi, ∀i ∈ {i∗, . . . , n}.
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(iv) If, in addition to (2), xi∗ = xi∗ and xi∗+1 > xi∗+1 for some i∗ ∈ {1, . . . , n− 1}, then

α∗i x
∗
i ≥ αjxj, j ∈ {i∗ = 1, . . . n}.

Proof: To prove (i), due to excess capacity, at least one source exceeds its target rate,
say xi∗ > xi∗ for some i∗ ∈ {1, . . . , n}. From Lemma 1, Ai∗ = 0 so fri∗ = 1. Since

xi∗ = α−1
i∗

√
2
pr
− 2, and, xi∗ > xi∗ > 0, then 0 < pr < 1. From Lemma 1 qo = qred which

proves (i).
To show (ii) we proceed by contradiction. Assume that xi∗ < xi∗ for some i∗ ∈ {1, . . . , n}.

From Lemma 1 it follows that Ai∗ → ∞ implying fgi∗ = 1. From (i) and Lemma 1, pg = 0
so it follows that xi∗ →∞. A contradiction.

To show (iii) we first use the fact that xi∗ > xi∗ implies fri∗ = 1. So

xi∗ = α−1
i∗

√
2

pr

− 2. (3)

From (i) pg = 0, thus, for any rate xi:

xi = α−1
i

√
2

fripr

− 2 ≥ α−1
i

√
2

pr

− 2.

Specifically, for i > i∗, combining the above with (1) and (3) gives

xi ≥ α−1
i

xi∗

α−1
i∗

> α−1
i

xi∗

α−1
i∗
≥ α−1

i

xi

α−1
i

= xi.

This proves (iii).
Finally, to prove (iv), start with xi∗ = xi∗ . Then

αi∗xi∗ = αi∗xi∗ =

√
2

fri∗pr

− 2 ≥
√

2

pr

− 2.

Now xj > xj implies that

αjxj =

√
2

pr

− 2

Combining the above gives
αi∗xi∗ ≥ αi∗+1xi∗+1.

2

The following is our main result for an over-provisioned network.

Theorem 4: If
n∑

i=1

xi < C
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and i∗ denotes the smallest integer in {1, 2, . . . , n} such that

C −∑i∗−1
i=1 xi∑n

i=i∗ α−1
i

− α∗i x
∗
i > 0, (4)

then,

xi =

{
= xi, i = 1, . . . , i∗ − 1
> xi, i = i∗, . . . , n.

(5)

Moreover, the greedy flows {xi : i = i∗, . . . , n} grab the available capacity according to:

xi = α−1
i

C −∑i∗−1
j=1 xj∑n

j=i∗ α−1
j

.

Proof: First, we show that there exists an i∗ satisfying (4). Since C >
∑n

i=1 xi, then it
follows that

αn

(
C −

n−1∑
i=1

xi

)
− αnxn > 0.

Hence, i∗ = n always satisfies (4).
Next, we prove (17). From Lemma 3(ii) there exists an î ∈ {1, 2, . . . n} such that

xi =

{
= xi, i = 1, . . . , î− 1

> xi, i = î, . . . , n.
(6)

Proceeding by contradiction, assume î 6= i∗. We consider two cases.

(Case 1: î < i∗) In this situation

C =
î−1∑
i=1

xi +
n∑

i=î

xi. (7)

Recall from Lemma 3(iii) that

αîxî = αî+1xî+1 = . . . = αnxn.

Combining this with (7) gives

C −∑î−1
i=1 xi∑n

i=î α
−1
i

= αîxî.

By assumption xî > xî, so

C −∑î−1
i=1 xi∑n

i=î α
−1
i

− αîxî > 0.
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Using (4) this implies i∗ ≤ î, which is a contradiction.

(Case 2: î > i∗) It follows from (6) that xi∗ = xi∗ . Thus, from Lemma 3(iv),

αi∗xi∗ ≥ αixi

for i = î, . . . , n so that

C =
î−1∑
i=1

xi +
n∑

i=î

α−1
i

xi

α−1
i

=
i∗−1∑
i=1

xi +
î−1∑
i=i∗

xi +
n∑

i=î

α−1
i

xi

α−1
i

≤
i∗−1∑
i=1

xi +
î−1∑
i=i∗

α−1
i

xi

α−1
i

+
n∑

i=î

α−1
i

xi∗

α−1
i∗

≤
i∗−1∑
i=1

xi +
î−1∑
i=i∗

α−1
i

xi∗

α−1
i∗

+
n∑

i=î

α−1
i

xi∗

α−1
i∗

≤
i∗−1∑
i=1

xi + αi∗xi∗

n∑
i=i∗

α−1
i

which contradicts (4). This completes the proof. 2

The marking/loss probability can now be computed. Since for i∗ in (4)

αi∗xi∗ =

√
2

pr

− 2

and

xi = α−1
i

C −∑
j=1,...,k−1 xj∑

j=k,...,n α−1
j

we obtain

pr =
1

1 + 0.5
(

C−Pi=1,...,i∗−1 xiP
i=i∗,...,n α−1

i

)2 .

1.2.1 Interpretation of Theorem 4

The index i∗ defines which sources are the most “greedy” in terms of grabbing available
bandwidth. For each source, the product αixi defines the required window size to achieve
its target rate xi. And this window defines the required marking/loss probability pi = fripr.
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While the multi-level AQM computes pr necessary for congestion control, the ARM attempts
to adjust fri such that pi remains fixed in spite of network variations. Hence, the role of the
ARM is to override TCP’s attempts to have all sources experience the same marking/loss
probability. As long as ARM finds an fri ≥ 1, we achieve xi = xi. When there is excess
network capacity, pr may become sufficiently low such that even with fri = 1, xi > xi. Either
way, with pi fixed for each source, those sources whose ARM must resort to setting fri = 1
are the “greedy” ones since they are solely under the control of TCP and hence have same
window length while sharing the excess bandwidth.

1.3 Over-Provisioned Case with External Sources

Consider a DiffServ network with sources that do not have a target rate. Specifically, let the
{1, . . . , n} sources have target rates xi while the n + 1 source does not, hence all its packets
are marked red.

Theorem 5: If
n∑

i=1

xi < C (8)

then Lemma 3 hold for all the subscribing flows i=1,. . . ,n. In addition, if i∗ is an integer
such that

i∗ =

{
mini∈[1,...,n]

C−Pi−1
j=1 xjPn+1

j=i α−1
j

− αixi > 0,
C−Pn−1

j=1 xjPn+1
j=n α−1

j

− αnxn > 0

n + 1, otherwise.
(9)

then

xi =

{
= xi, i = 1, . . . , i∗ − 1
> xi, i = i∗, . . . , n.

(10)

Moreover, the greedy flows {xi : i = i∗, . . . , n} grab the available capacity according to:

xi = α−1
i

C −∑i∗−1
j=1 xj∑n+1

j=i∗ α−1
j

(11)

while the external source shares the bandwidth according to

xn+1 = α−1
n+1

C −∑i∗−1
j=1 xj∑n+1

j=i∗ α−1
j

(12)

Proof: We begin by proving Lemma 3 for this setup. To show 3(i), note that pn+1 = pr.
If q0 > qred, then pr = 1 and xn+1 = 0 resulting in

∑n
i=1 xi = C. So at least one source

exceeds its target rate, say xi∗ > xi∗ for some i∗ ∈ {1, . . . , n}. From Lemma 1, Ai∗ = 0 so
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fri∗ = 1. Since xi∗ = α−1
i∗

√
2
pr
− 2 and pr = 1 implying xi∗ = 0. A contradiction. Hence at

equilibrium qo = qred.
To show 3(ii) we proceed by contradiction. Assume that xi∗ < xi∗ for some i∗ ∈

{1, . . . , n}. From Lemma 1 it follows that Ai∗ → ∞ implying fgi∗ = 1. From 3(i) and
Lemma 1, pg = 0 so it follows that xi∗ →∞. A contradiction.

To show 3(iii) we first use the fact that xi∗ > xi∗ for some i∗ ∈ {1, . . . , n} implies fri∗ = 1.
So

xi∗ = α−1
i∗

√
2

pr

− 2. (13)

From 3(i) pg = 0, thus, for any rate xi in i ∈ {1, . . . , n}:

xi = α−1
i

√
2

fripr

− 2 ≥ α−1
i

√
2

pr

− 2.

Specifically, for i > i∗, the above, (1) and (13) together give

xi ≥ α−1
i

xi∗

α−1
i∗

> α−1
i

xi∗

α−1
i∗
≥ α−1

i

xi

α−1
i

= xi.

This proves 3(iii).
Finally, to prove 3(iv), start with xi∗ = xi∗ for some i∗ ∈ {1, . . . , n}. Then

αi∗xi∗ = αi∗xi∗ =

√
2

fri∗pr

− 2 ≥
√

2

pr

− 2.

Now xi∗ > xi∗ implies that

αi∗+1xi∗+1 =

√
2

pr

− 2

Combining the above gives
αi∗xi∗ ≥ αi∗+1xi∗+1.

To show (10)-(12), we first note that from 3(ii) we know that all sources achieve at least
their target rates and that the “ordering” rules 3(iii)-3(iv) also hold in this case. What we
have to show is how much bandwidth, if any, xn+1 is allocated by TCP. The subscribing
sources will then have C − xn+1 ≥

∑n
i=1 xi bandwidth left which is precisely the case solved

in Theorem 5. From (9) we have two possibilities: i ∈ {1, . . . , n} or i = n+1. Let i∗ = n+1
and proceed by contradicting (10) and assuming xn > xn and xn−1 = xn−1. Using 3(iii)-3(iv)
we expand (8) as

C =
n−1∑
i=1

xi + xn + xn+1.

Since the non-subscribing source xn+1 has only red packets, as well as any source exceeding
their target rates, their rates are given by the generic relation

x = α−1

√
2

pr

− 2
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where
√

2
pr
− 2 is the window W afforded to each such source by TCP. Plugging this into

the above expansion gives

C −
n−1∑
i=1

xi = (α−1
n + α−1

n+1)

√
2

pr

− 2

so
C −∑n−1

i=1 xi∑n+1
i=n α−1

i

=

√
2

pr

− 2 = αnxn > αnxn.

This contradicts the definition of i∗ = n + 1 in (9), hence we must have xn = xn. From
Lemma 3 it follows that xi = xi, i = 1, . . . , n while the excess bandwidth is grabbed by the
non-subscribing source

xn+1 = C −
n∑

i=1

xi.

Next, consider the other possibility in (9) where i∗ ∈ [1, . . . , n]. Let i∗ = n and proceed by
contradicting (10) and assuming xn = xn. Since

xn =

√
2

fn
r pr

− 2 ≥
√

2

pr

− 2

then

C −
n−1∑
i=1

xi = xn + xn+1

= α−1
n

xn

α−1
n

+ α−1
n+1

√
2

pr

− 2

≤ α−1
n

xn

α−1
n

+ α−1
n+1

√
2

fn
r pr

− 2

= (α−1
n + α−1

n+1)

√
2

fn
r pr

− 2

= (α−1
n + α−1

n+1)
xn

α−1
n

which can be written as
C −∑n−1

i=1 xi∑n+1
i=n α−1

i

− αnxn ≤ 0.

This contradicts the definition of i∗ = n in (9), hence we must have xn > xn. To complete
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proving (10), we continue by contradiction and assume that xn−1 > xn−1. Hence,

C −
n−2∑
i=1

xi = xn−1 + xn + xn+1

=

√
2

pr

− 2
n+1∑

i=n−1

α−1
i

= αn−1xn−1

n+1∑
i=n−1

α−1
i

> αn−1xn−1

n+1∑
i=n−1

α−1
i

which implies i∗ = n − 1 in (9). A contradiction. This shows complete the proof of (10).
Finally, using (10) in expanding (8) it is straightforward to show (11)-(12). This completes
the proof. 2

Remark: In the above case, there’s no guarantee that i∗ ∈ {1, . . . , n}. For some network
parameters, it may be that the n+1 source grabs all the available capacity C−∑n

i=1 xi. This
depends on the size of α−1

n+1, specifically, how it reduces the available window test relation
in (9).

1.4 Under-Provisioned Case

Lemma 6: If
n∑

i=1

xi > C (14)

then:

(i) The queue’s state at equilibrium is qo = qgreen.

(ii) All sources at most achieve their target rates:

xi ≤ xi, i = 1, . . . , n.

(iii) If in addition to (14), xi∗ < xi∗ for some i∗ ∈ {1, . . . , n}, then

xi < xi, ∀i ∈ {1, . . . , i}].

(iv) If, in addition to (14), xi∗ = xi∗ for some i∗ ∈ {1, . . . , n} and xi∗−1 < xi∗−1, then

αi∗xi∗ ≤ αjxj, j ∈ {1, . . . , i∗ − 1}.
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Proof: To prove (i), due to lack of capacity, at least one source does not achieve its target
rate, say xi∗ < xi∗ for some i∗ ∈ {1, . . . , n}. From Lemma 1, Ai∗ → ∞ so fri∗ = 0. Since

xi∗ = α−1
i∗

√
2
pg
− 2, then 0 < pg < 1. From Lemma 1 qo = qgreen which proves (i).

To show (ii) we proceed by contradiction. Assume that xi∗ > xi∗ for some i∗ ∈ {1, . . . , n}.
From Lemma 1 it follows that Ai∗ = 0 implying fri∗ = 1. From (i) and Lemma 1, pr = 1 so

it follows that xi∗ = α−1
i∗

√
2
pr
− 2 = 0. A contradiction.

To show (iii) we first use the fact that xi∗ < xi∗ implies fgi∗ = 1. So

xi∗ = α−1
i∗

√
2

pg

− 2. (15)

From (i) pr = 1, thus, for any rate xi:

xi = α−1
i

√
2

fri(1− pg) + pg

− 2 ≤ α−1
i

√
2

pg

− 2.

Specifically, for i < i∗, the above, (1) and (15) together give

xi ≤ α−1
i

xi∗

α−1
i∗

< α−1
i

xi∗

α−1
i∗
≤ α−1

i

xi

α−1
i

= xi.

This proves (iii).
Finally, to prove (iv), start with xi∗ = xi∗ . Then

αi∗xi∗ = αi∗xi∗ =

√
2

fri∗(1− pg) + pg

− 2 ≤
√

2

pg

− 2.

Now xj < xj implies that

αjxj =

√
2

pg

− 2

Combining the above gives
αi∗xi∗ ≤ αi∗−1xi∗−1.

2

The following is our main result for an under-provisioned network.

Theorem 7: If
n∑

i=1

xi > C

and i∗ denotes the largest integer in {1, 2, . . . , n} such that

α∗i x
∗
i −

C −∑n
i=i∗+1 xi∑i∗

i=1 α−1
i

> 0, (16)
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then,

xi =

{
< xi, i = 1 . . . , i∗

= xi, i = i∗ + 1, . . . , n.
(17)

Moreover, the non-greedy sources {xi : i = 1, . . . , i∗} under-achieve according to:

xi = α−1
i

C −∑n
i=i∗+1 xi∑i∗

i=1 αi−1
.

Proof: First, we show that there exists an i∗ satisfying (16). We consider two possible cases.
In the first case, no source achieves its target rate. From Lemma 1, all under-achieving
sources are described by

xi = α−1
i

√
2

pg

− 2

so

C =
n∑

i=1

xi =
n∑

i=1

α−1
i

√
2

pg

− 2.

Rearranging gives

C∑n
i=1 α−1

i

=

√
2

pg

− 2 = αixi < αixi.

Hence i∗ = n satisfies (16). The second case assumes some sources achieve their target rates.
Lemma 6(iii) shows that in such a case, at the least, xn = xn. Assume that xi = xi only for
the n′th source, hence, the remaining sources under-achieve. That is

C =
n−1∑
i=1

xi + xn =
n−1∑
i=1

α−1
i

√
2

pg

− 2 + xn

which can written as

C − xn∑n−1
i=1 α−1

i

=

√
2

pg

− 2 = αn−1xn−1 < αn−1xn−1.

Hence i∗ = n− 1 satisfies (16). This proves that there exists i∗ ∈ {1, . . . , n} satisfying (16).
Next, we prove (17). From Lemma 6(ii) there exists an î ∈ {1, 2, . . . n} such that

xi =

{
< xi, i = 1 . . . , î

= xi, i = î + 1, . . . , n.
(18)

Proceeding by contradiction, assume î 6= i∗. We consider two cases.
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(Case 1: î > i∗) In this situation

C =
î∑

i=1

xi +
n∑

i=î+1

xi. (19)

Recall from Lemma 6(iii) that

αîxî = αî−1xî−1 = . . . = α1x1.

Combining this with (19) gives

C −∑n
i=î+1 xi∑î

i=1 α−1
i

= αîxî.

By assumption, xî < xî, so

αîxî −
C −∑n

i=î+1 xi∑î
i=1 α−1

i

> 0.

From (16) this implies î ≤ i∗, which is a contradiction.

(Case 2: î < i∗) It follows from (6) that xi∗ = xi∗ . Thus, from Lemma 6(iv),

αi∗xi∗ ≤ αixi,

for i = 1, . . . , î− 1, so that

C =
î∑

i=1

xi +
n∑

i=î+1

xi

=
î∑

i=1

xi +
i∗∑

î+1

xi +
n∑

i=i∗+1

xi

≤
î∑

i=1

xi +
n∑

i=î+1

xi

= αîxî

î∑
i=1

α−1
i +

n∑

i=î+1

xi.

This contradicts (16), since given i∗, then the inequality (16) also holds for i ∈ {1, . . . , i∗}.
This completes the proof. 2
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