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Abstract

Recent work has shown the benefit of using propor-
tional feedback in TCP/AQM networks. By propor-
tional feedback we mean the marking probability is
proportional to the instantaneous queue length. Our
earlier work relied on linearization of nonlinear fluid-
flow models of TCP. In this work we address these non-
linearities directly and establish some stability results
when the marking is proportional. In the case of delay-
free marking, we show the system’s equilibrium point
to be asymptotically stable for all proportional gains.
In the more realistic case of delayed feedback, we es-
tablish local asymptotic stability and quantify a region
of attraction.

1 Introduction

The reliable and efficient exchange of information
across the Internet has been a key ingredient to its ex-
plosive growth and utilization. At the heart of this
information exchange is the Transmission Control Pro-
tocol (TCP). Under TCP, a sender has authority to
set its transmission rate using a window flow-control
mechanism. The sender continuously probes the net-
work’s available bandwidth and increases its window
size to garner maximum share of network resource. For
each successful end-to-end packet transmission TCP in-
creases the sender’s window size. Conversely, TCP cuts
the window in half whenever a sender’s packet does not
reach the receiver. Such packet losses can affect net-
work performance by decreasing the sender’s effective
transmission rate and increasing delay due to packet
retransmission. By itself, TCP has no information of
network mechanisms contributing to packet loss – such
as the congested router shown in the simple sender-
receiver connection of Figure 1. Thus, routers must
assume a role in network management by sensing con-
gestion and preemptively signaling TCP rather than
have it react to unreceived packets.

1This work is supported in part by the National Science
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Figure 1: Router congestion results in lost packets. The
receiver then signals sender to decrease window
size.

The simplest form of such active queue management
(AQM), termed drop tail, drops arriving packets when
the router’s buffer is full. Drawbacks of this scheme
include flow-synchronization (see [1]) and performance
degradation due to the excessive time-outs and restarts
arising when the trailing end of a sequence of data
packets is dropped. Motivated by drop-tail’s inefficien-
cies, the random early detection (RED) scheme was
introduced in [1]. Rather than waiting for buffer over-
flow to occur, RED anticipates congestion by measur-
ing the router’s average queue length and throttling
the sender’s rate accordingly. Since TCP is an end-to-
end protocol, RED achieves this signaling indirectly by
randomly marking packets and routing them to the re-
ceiver.1 The receiver, in turn, completes the feedback
by acknowledging the receipt of marked packets to the
sender; this is depicted in Figure 2 where we emphasize
the implicit, delayed, feeding-back of acknowledgment
packets.2 Upon receipt of such acknowledgments, the
sender adjusts its rate according to the TCP algorithm.
The randomness in RED’s packet-marking scheme was
meant to eliminate flow-synchronization and introduce
fair-marking while queue-averaging was introduced to
attenuate the effects of bursty traffic on the feedback
signal. A crucial drawback in deploying RED stems
from tuning difficulties where the performance of RED
can approach that of a drop-tail router; e.g., see [2],

1By marking packets we refer to the action of either dropping
packets or setting their explicit congestion notification (ECN)
bit.

2This time delay is equivalent to one round-trip time which
is comprised of propagation and queuing delays.
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Figure 2: RED randomly marks packets to anticipate con-
gestion.

[3] and [4]. Motivated by these deficiencies in the basic
RED mechanism, researchers have proposed modifica-
tions; e.g., see [5] – [7]. Our recent research is motivated
by a desire to design advanced AQM schemes which ex-
plicitly rely on dynamic modeling and feedback control
principles. Central to our approach is the recognition
that AQM schemes are essentially feedback control sys-
tems and that the principles of control theory can pro-
vide critical insight and guidance into the analysis and
design of such schemes. While such principles can be
found in the study of ATM networks (see for example
[8] and [9] and the references cited therein) they have
not been applied to TCP-controlled flows. Their ab-
sence from the design scene so far is apparently due to
a lack of an analytical model of TCP. Fortunately, this
roadblock has been recently removed in [10] with the
introduction of a fluid-flow model that expresses TCP
in a language that allows control engineers to analyze
and design AQM schemes.3 Indeed, in and [13], [14]
and [15] we have done just that by:

1. Relating key network parameters such as TCP
load, router capacity and round-trip time to the
stability and performance of AQM systems.

2. Analyzing RED and showing that queue averag-
ing is not advisable from a feedback control view-
point.

3. Proposing improved AQM schemes which
amount to classical proportional (P) and
proportional-integral (PI) feedback controllers.4

The objective of this paper is to continue this line of
research and more formally address the nonlinearities
appearing in the TCP fluid-flow model [10].5 Our work

3We’d also like to point out other recent TCP models in [11]
and [12]. In [13] we discuss them in the context of our fluid-flow
model.

4Both P and PI controllers have been suggested by others;
see [16] and [17] respectively. One of our contributions was to
provide feedback-control rationale for these schemes and to give
systematic design rules.

5Related, nonlinear stability analysis for optimization-based
flow control has been conducted in [18]. While [18] considers
rate-based congestion control, our paper addresses window-based

in [14] and [15] relied on small-signal linearization of
these nonlinearities. Specifically, assuming a propor-
tional packet-marking strategy we will show in this pa-
per: 1) the resulting closed-loop dynamics are globally
asymptotically stable if the marking is delay-free. 2)
the equilibrium point is local asymptotic stability un-
der delayed-marking. In the latter case we will identify
a region of convergence whose radius is inversely pro-
portional to the gain-delay product.

In the next section we introduce the nonlinear TCP
dynamics and a proportional AQM scheme which to-
gether forms the basis of our analysis. In Sections 3
and 4 we conduct stability analyzes for the delay-free
and delayed marking cases respectively. We conclude
in Section 5.

2 Dynamics of TCP/AQM

2.1 A fluid-flow model of TCP
In [10], a dynamic model of TCP behavior was

developed using fluid-flow and stochastic differential
equation analysis. Simulation results demonstrated
that this model accurately captured the dynamics of
TCP. In this paper we use a simplified version of that
model which ignores the TCP timeout mechanism.
This model relates the average value of key network
variables and is described by the following coupled,
nonlinear differential equations:

Ẇ (t) =
1

R(t)
− W (t)

2
W (t−R(t))
R(t−R(t))

p(t−R(t))

q̇(t) = N(t)
W (t)
R(t)

− C (1)

where ẋ denotes the time-derivative of x and

W
.= average TCP window size (packets);

q
.= average queue length (packets);

R
.= round-trip time =

q

C
+ Tp (secs);

C
.= queue capacity (packets/sec);

Tp
.= propagation delay (secs);

N
.= number of TCP sessions;

p
.= probability of packet mark.

The queue length q and window-size W are positive
and bounded quantities; i.e., q ∈ [0, qmax] and W ∈
[0,Wmax] Also, the marking probability p takes value
only in [0, 1]. We illustrate these differential equations
in the block diagram of Figure 3 which highlights TCP
window-control and queue dynamics. We now consider
an AQM scheme in which the probability of packet

schemes that necessarily rely on the nonlinear dynamics of TCP.
We also address the effect of time-delay in marking which is
missing in [18].
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Figure 3: Block-diagram of TCP’s congestion-avoidance
mode.

2.2 Proportional AQM scheme
Active queue management is a core process wherein

packets are marked as a function of queue length; see
Figure 4. Marking packets in this way amounts to re-
ducing TCP source rates as queue length grows. The
objective is to manage buffer size as a means for reg-
ulating buffer utilization and queuing delay. Recent
AQM schemes include RED, random exponential mark-
ing (REM) in [17] and PI control. In RED, the loss is
made roughly proportional to average queue length. In
both REM and PI, the loss is a weighted sum of instan-
taneous queue length and its integral. In this paper
we will analyze the stability of a proportional scheme
wherein loss probability is proportional to the instan-
taneous queue length and described by p = Kpq with
Kp > 0 and p ∈ [0, 1]. Combining with (1) gives the
closed-loop dynamics

Ẇ (t) =
1

R(t)
− W (t)

2
W (t−R(t))
R(t−R(t))

Kpq(t−R(t))

q̇(t) = N(t)
W (t)
R(t)

− C. (2)

We now assume that the TCP load N and round-
trip time R are time-invariant; i.e., N(t) ≡ N and
R(t) ≡ R. The former assumes that the number of
TCP flows is constant, while the latter may be a good
approximation when round-trip time is dominated by
the propagation delay. This occurs when the capacity
C is large. Additionally, in [13] we have shown that
the right-hand side of the Ẇ equation in (2) can be
approximated by

1
R
− W (t)W (t)

2R
Kpq(t−R)

when the window size satisfies W À 1. Under these
conditions the equilibrium points (W0, q0) for (2) are
given by

W0 =
RC

N
; q0 =

2N2

R2C2Kp
. (3)

In the transformed variables W̃
.= W −W0, q̃

.= q− q0,
(2) becomes

˙̃W (t) = − (W̃ (t) + W0)2

2R
Kpq̃(t−R) (4)

− W̃ 2(t) + 2W̃ (t)W0

2R
Kpq0

˙̃q(t) =
N

R
W̃ (t). (5)

The equilibrium point for (5) is then (W̃ , q̃) = (0, 0).
Note that q̃ ≥ −q0 since q > 0.
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Figure 4: AQM signals TCP sources to reduce their win-
dow sizes as a function of instantaneous queue
length.

3 Delay-free marking

In this section we conduct a first analysis under the
assumption of delay-free marking; i.e., p(t) = Kpq(t).
We will show that the AQM system’s equilibrium point
(W0, q0) is asymptotically stable for all positive gains
Kp. In the next section we will study the case of de-
layed marking. For simplicity we drop the explicit de-
pendence on time and write (5) as

˙̃W = − (W̃ (t) + W0)2

2R
Kpq̃ − W̃ 2 + 2W̃W0

2R
Kpq0

˙̃q =
N

R
W̃ . (6)

Eliminating W̃ from (6) gives the second-order differ-
ential equation

¨̃q + βb( ˙̃q)Kp(q̃ + q0) + αKpq̃ = 0 (7)

where

b( ˙̃q) .= 0.5 ˙̃q
2

+ C ˙̃q;

α
.=

C2

2N
;

β
.=

1
N

. (8)



Consider the positive-definite Lyapunov candidate

V (q̃, ˙̃q) =
1
2

˙̃q
2

+
1
2
αKpq̃

2. (9)

Along solutions to (7) compute the time-derivative

V̇ = ˙̃q(¨̃q + αq̃)
= −β ˙̃qb( ˙̃q)Kp(q̃ + q0).

Since ˙̃q = q̇ = NW
R − C and NW

R > 0 then ˙̃q > −C.

Hence, ˙̃qb( ˙̃q) = ˙̃q
2
(0.5 ˙̃q + C) ≥ 0. Consequently,

V̇ = −β ˙̃qb( ˙̃q)Kp(q̃ + q0) ≤ 0

for all ˙̃q ≥ 0 and all q̃ ≥ −q0. This proves the equi-
librium point is stable. To conclude asymptotic stabil-
ity we invoke a standard invariant set result, see [19],
which states that trajectories of (6) converge to the
largest invariant set contained in

M .= {(q̃, ˙̃q) : V̇ = 0}
= {(q̃, ˙̃q) : ˙̃q = 0 or q̃ = −q0}.

However, the only invariant set contained in M is
the equilibrium point (0, 0). Indeed, if (q̃(t), ˙̃q(t))
is equal to (q̃(t), 0) or (−q0, ˙̃q(t)) then, using (7),
(q̃(t+), ˙̃q(t+)) /∈ M. This proves asymptotic stability
which we now summarize:

Theorem 1: The equilibrium point of (6) is asymptot-
ically stable for all Kp > 0. 2

4 Delayed marking

We now consider the case when packet-marking is
delayed by the round-trip time R. In this case, the
proportional AQM algorithm is p(t−R) = Kpq(t−R)
and we write (7) as

¨̃q(t)+βb( ˙̃q(t))Kp(q̃(t−R)+q0)+αKpq̃(t−R) = 0 (10)

where q0, α and β are defined in (3) and (8). In
the subsequent analysis we will rely on the fact that
˙̃q is bounded. This follows since ˙̃q = NW

R − C and
since the window size W is bounded. Using Lyapunov-
Razumikhin formalism for delay-differential equations
(see [20]) we again consider the positive-definite candi-
date (9). Using the identity

q̃(t−R) = q̃ −
∫ 0

−R

˙̃q(t + θ)dθ,

we compute

V̇ = −β ˙̃qb( ˙̃q)Kp(q̃+q0)+ ˙̃q(βb( ˙̃q)+α)Kp

∫ 0

−R

˙̃q(t+θ)dθ.

Following the formalism, we first assume a λ > 1 such
that

V (ξ) ≤ λV (t) (11)

for all t − R ≤ ξ ≤ t. Asymptotic stability is demon-
strated if condition (11) implies V̇ < 0.6 To this end,
(11) indeed implies

˙̃q(ξ) ≤ λ‖z(t)‖

for all t−R ≤ ξ ≤ t where z(t) .= [αq̃(t) ˙̃q(t)]. Hence,

∫ 0

−R

˙̃q(t + θ)dθ ≤ λR‖z(t)‖

for all t−R ≤ ξ ≤ t. As a result,

V̇ ≤ −β ˙̃qb( ˙̃q)Kp(q̃ + q0 − λR‖z(t)‖) + αKpλR‖z(t)‖ ˙̃q.
(12)

Since both q̃ and ˙̃q are bounded it is possible to take
αKp = Kp

N small enough to force Kp‖z(t)‖ ≈ KP | ˙̃q|
and make negligible the second term on the right-hand
side of (12). In this case,

V̇ ≤ −β ˙̃qb( ˙̃q)Kp(q̃ + q0 − λR| ˙̃q|).

Since q0 > 0, there exists a (q̃, ˙̃q)-neighborhood over
which Kp(q̃ + q0 − λR| ˙̃q|) > 0.7 Using an invariant-set
argument as in the previous section we conclude (10) to
be locally asymptotically stable. A region of attraction
is the level-set interior:

VL
.= {(q̃, ˙̃q) : V (q̃, ˙̃q) < L} (13)

where L satisfies

(q̃, ˙̃q) ∈ VL ⇒ Kp(q̃ + q0 − λR| ˙̃q|) > 0.

A suitable L (see Appendix) is

L = min
{

1
4K2

P R2
,

N4

16R6C4K2
p

}
. (14)

We summarize.

Theorem 2: For sufficiently small Kp

N > 0, the equi-
librium point of (10) is locally asymptotically stable. A
region of attraction is given by (13) and (14). 2

5 Conclusion

In this paper we have conducted a stability analysis
of TCP/AQM based on the fluid-flow model developed
in [10]. We considered the simplest of packet-marking
rules in which marking is proportional to buffer queue

6See Theorem 4 in [20].
7We must include Kp > 0 in this inequality to account for

p ∈ [0, 1] which, in turn, implies Kp(q̃ + q0) ∈ [0, 1].



length. We show that the resulting closed loop dynam-
ics are globally asymptotically stable when the marking
is delay-free. When the marking’s action is delayed by
the round-trip time, the stability results become local
in nature. We show that the region of attraction is in-
versely proportional to the gain-delay product. There
are at least three areas in which we would like to expand
this analysis. First, to include proportional-integral
marking as introduced in [15] and [17]. Secondly, to in-
clude a queuing delay component ( q

C ) in the round-trip
time. The time-delay then becomes state-dependent.
Thirdly, to allow for time-varying load flow as modeled
by time-variation in N .
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A Region of Attraction

We seek an L > 0 such that

(q̃, ˙̃q) ∈ VL ⇒ Kp(q̃ + q0 − λR| ˙̃q|) > 0

where
VL

.= {(q̃, ˙̃q) : V (q̃, ˙̃q) < L}
and

V (q̃, ˙̃q) =
1
2

˙̃q
2

+
1
2
αKpq̃

2.

Since Kp(q̃ + q0) < 1, then L = min{L1, L2} where
L2 = V (0, 1

KpR ) = 1
4K2

pR2 and L1 renders

V (
1
R

q̃ +
1
R

q0, ˙̃q) = L1

to have solution q̃ ≥ q0. Computation gives L1 =
N4

16R6C4K2
p
.
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