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Abstract

Bode’s gain-phase relationship places a hard limitation on performance tradeoffs in
linear, time-invariant feedback control systems. It has long been suggested that reset
control has the potential to improve this situation. Recent experimental studies support
this claim. This paper focuses on the analysis of such reset control systems which has
been missing in this past work. Specifically, we give results on bounded-input bounded-
output stability, asymptotic stability and steady-state performance. These results are
applied to an experimental demonstration of reset control of a flexible mechanism.
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1 Introduction

It is well-appreciated that Bode’s gain-phase relationship [1] places a hard limitation on
performance tradeoffs in linear, time-invariant (I'TT), feedback control systems. Specifically,
the need to minimize the open-loop high-frequency gain often competes with required high
levels of low-frequency loop gains and phase margin bounds. Our focus on reset control
systems is motivated by its potential to improve this situation as demonstrated thoretically
in [2]' and by simulations and experiments [3]-[6].

The basic concept in reset control is to reset the state of a linear controller to zero
whenever its input meets a threshold. Typical reset controllers include the so-called Clegg
integrator [7] and first-order reset element (FORE) [3]. The former is a linear integrator
whose output resets to zero when its input crosses zero. The latter generalizes the Clegg
concept to a first-order lag filter. In (7], the Clegg integrator was shown to have a describing
function similar to the frequency response of a linear integrator but with only 38.1° phase
lag. A FORE was shown to have similar feature while providing a further design freedom
when compared with Clegg-integrator ([4] and [6]). In our study, we adopt the FORE reset
mechanism in feedback interconnection with a linear system to obtain the so-called reset
control system shown in Figure 1. The signals r,y,e,n and d in Figure 1 represent reference
input, output, error signal, sensor noise and disturbance, respectively, and L(s) denotes the
linear loop consisting of the plant and any linear compensation?.

-0 > FORE [—® 1L(s) Y

Figure 1: The class of reset control systems considered in this paper.

The objective of this paper is to provide a level of analysis missing in past work on reset
control. The analysis in [7] was limited to describing functions while [3] and [4] ignored
stability issues altogether. An application of small gain in [5] appears too conservative and
could not validate the observed experimental performance in [6]. Motivated by this lack of
results, this paper continues our recent work reported in a sequence of conference papers [8|,
9], and [10]. In this paper, we introduce a condition, called the 3 positive-real condition,
which, when satisfied, allows one to assert BIBO and asymptotic stability of the reset control
system. Under this condition, we will also show that the reset control system inherits the
steady-state tracking properties of an underlying linear control system. Very importantly,

LThis work provides an example of control specifications that can be achieved by reset control and not
by linear feedback.

2The design of the reset control system in Figure 1 involves the selection of both the FORE’s pole and
some linear compensation in L(s). This will be discussed in Section 5.



we will show that the J positive-real condition is satisfied for the experiment considered in
[6], thus confirming the observed stability as well as demonstrating the applicability of our
results.

Reset control action resembles a number of popular nonlinear control strategies including
relay control [11], sliding mode control [12] and switching control [13]. A common feature
to these is the use of a switching surface to trigger change in control signal. Distinctively,
reset control employs the same (linear) control law on both sides of the switching surface.
Resetting occurs when the system trajectory impacts this surface. This reset action can be
alternatively viewed as the injection of judiciously-timed, state-dependent impulses into an
otherwise L'TT feedback system. This analogy is evident in the paper where we use impulsive
differential equations; e.g., see [14] and [15], to model dynamics. Despite this relationship,
we found existing theory on impulse differential equations to be either too general or broad
to be of immediate and direct use. Finally, this connection to impulsive control helps to draw
comparison to a body of control work [16] where impulses were introduced in an open-loop
fashion to quash oscillations in vibratory systems.

The paper is organized as follows. In Section 2 we set-up a model to describe the reset
control system in Figure 1 and identify a key underlying linear control system which we refer
to as the base-linear system. Section 3 is central. It introduces this notion of 8 positive-
realness and links it to BIBO stability. In Section 4 we again use the 3 positive-real condition
to show that the base-linear system passes-on its steady-state performance properties to the
reset control system. In Section 5, we apply these results to an experimental system involving
speed control of a flexible mechanism which will demonstrate the non-trivial applicability
of our analytical results. It also provides another independent and favorable comparison of
reset to L'TT control.

2 Set-Up

In this paper we focus on the reset control system in Figure 1 where the first-order reset
element (FORE) is described by the impulsive differential equation [14]:

gp(t) = —bzp(t) +e(t); e(t) #0
ze(tT) = 0 e(t) =0

where x5 is its state, e is the system error and b the FORE’s pole; see [3]. To avoid degener-
ation to a LTT system, we assume that the FORE continually resets. We collect these reset
times in the unbounded set

I:{tl ’ €<t1> :0, t; > ti_1 + o, O'>0, i:1,2,...,oo}

where we assume that adjacent reset times are no closer than o. This assumption is techni-
cally motivated by a desire to have closed-loop solutions continuable over [0, 00), but is met
when FORE is digitally implemented and the sampling period is a lower bound to o.



A state-space description of the reset control system is:

B(t) = Aey(0) + Bes()
Bp(t) = —Cuy(t) = bup(t) +w(t); t &1
Ty t+> = 0 tel
y(t) = Cuy(t) +d(t) (1)

where {A, B, C'} denotes a minimal realization of L(s), z,(t) € ®" and w(t) = r(t) —n(t) —
d(t) is the aggregate input signal. Given (z,(0), z(0)), the solution to (1) is piecewise left-
continuous on the intervals (¢;,t;11]. In the absence of resetting, (1) reduces to the following
linear system:

A e I RO B TR B

Ad[A ‘B].

where

—C —b

We refer to this as the base-linear system and, in the sequel, we will show that it can pass on
some of its properties, such as stability and asymptotic performance, to its associated reset
control system.

3 BIBO Stability Analysis

In this section we analyze the BIBO stability of (1) which requires every bounded input?®
w to produce a bounded output y. To begin this analysis we apply the transformation

zp(t) = xp(t) — ()

zp(t) = ap(t) —wpu(t) (3)
to (1) to obtain:
Zp (1) = Az(t) + Bz(t)
zr (t) = —Cz(t) —bzs(t); t &1
Zf(lfj) = —33ﬂ<t¢>; tel. (4)

As an intermediate step, we show that boundedness of z, implies that y is bounded.

Lemma 1: Assume A is asymptotically stable and r, d and n are bounded. If z, is
bounded, then output y s bounded.

3 A signal z is said to bounded if there exists a constant M such that |2(t)| < M for all £.



Proof: We have

(@) = |Czp(t) +d(1)]
< [Cz O]+ |Can(t)] +]d(E)]-

Since A, is stable and w is bounded, then x,; is bounded. Output y is thus bounded. O
Before we present our main result on BIBO stability, we need the following lemmas.

Lemma 2: If A, is asymptotically stable and w is bounded, there exists constants M,
and My such that |z; ()] < My and |Cz,(t;)] < My fori=1,2,...,00.

Proof: Because A, is asymptotically stable and w, then x5 and x,; are bounded. From

(4), z¢(t}) = —=zp(t;). Therefore, there exists an M; such that |z,(t})] < My for i =
1,2,...,00. By definition, Cz,(t;) = w(t;) — Czpy(t;). Since w and z,; are bounded, then
there exists an My such that |Cz,(t;)| < My for i =1,2,..., 00. O

The next is the well-known Meyer-Kalman-Yakubovich Lemma [17].

Lemma 3: Let Z(s) = h(sl — F)~'g be a scalar transfer function where H is asymptot-
ically stable. If Z(s) is strictly positive-realt then there exist a symmetric positive-definite
matriz P, a vector q, and a positive constant € such that

FIpy+ PF = —¢Tq—cP;
Pg = hT.

Our next definition introduces a positive-real condition that is key in establishing the
results of this paper.

Definition 1: The reset control system (1) is said to satisfy the 3 positive-real condition
if there exists a 3 € R such that

h(s) = (BC 1](s] — Ay)7H0 -+ 017 s strictly positive-real. (5)
We now state a main result:

Theorem 1: The reset control system (1) is BIBO stable if the 3 positive-real condition
(5) is satisfied.

Proof: Since h(s) in (5) is strictly positive-real, then, from Lemma 3, there exists a
positive-definite matrix P, a vector ¢ and a positive constant ¢ such that

PA, + ALP = —¢"q—cP;
PO --- 01" = [pC 1] (6)

1A transfer function X(s) is said to be strictly positive real if: (1) X(s) is asymptotically stable, and (ii)
Re[X(jw)] > 0, Vw > 0.




Hence, P can be written as

[ pogor
el

where P; € ™" is positive-definite. Along the piecewise left-continuous solutions of (4) we
define

V() = g (1), 21 (D] Plz, (1), 2, ()]
= 2, () Pizyp(t) + 2802 ()24 (t) + 25(t)

over t € (t;,tiy1]. At the reset instants t = ¢; we then have

V(tS) = 2 (t)Przp(ts) +28Cz ()2 (1) + 24(t)
= V(t:) + 2802tz (1) + 2 (1) — 280 (t:) 2 (t:) — 27(t)-

Since —23Cz,(t;)z(t;) — 23(t:) < (BCz (1)),

V() < V() +28Cz(t)z(t) + (1) + (BCz (1))
V() + [z (tF) + BCz ()" (7)

Because w is bounded, it follows from Lemma 2 that there exists a constant M > 0 such
that [2;(t7) + BC2(t:)]* < M for i = 1,2,...,00. Thus, from (7):

VI < V() +M, i—1,2,..., 00

Differentiating V (¢) along solutions to (4), we use (6) to obtain

V() = Iz (1), z( )](PAcz+A P)lz, (t), 2 (0)]"
= Lz (0), 2 (D) (—a"a = P)lz, (1), 2 ()]
< —elzy (1), 2 ()] P [ (t) Z(1)]"
= —V(t)

for all t € (t;,t;+1]. The non-negativity of V (¢) implies
V(1) < e Dv(t) (8)
whenever t € (t;,t;41]. Since t;41 —t; > 0,

V<tz'+1> e—g(tz'ﬂ—tz')‘/(t;r)

eTV(t)
e~ [V (t:) + M].

IAIA A

Combining this with (8) gives

V(t) < et =Dy (0) 4 M 4 e M 4 ... 4 e =D ) (9)
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for allt € (t;,t;41]. Since V(0) =0, V(t) < M/(1—e77). Therefore, V is bounded. Because
P is positive-definite, it follows that 2, is bounded. Finally, from Lemma 1, ¥ is bounded.
This completes the proof. O

Remarks: (i) While the 3 positive-real condition is only sufficient for BIBO stability, it
appears that it may be applicable to non-trivial situations. For example, in Section 5 we show
that this condition is satisfied for a reset control system having 12"-order L(s). Similarly,
in [18], the experimental set-up in [6] is shown to satisfy the [ positive-real condition (5).

(ii) There exists an important class of reset control systems that satisfy the 3 positive-real
condition and, hence, are BIBO stable. To describe them, consider the reset control systems
in Figure 1 with

L(s) - 5D
s(s + 2Cwy)
where b is the pole of FORE and {,w,, > 0. This class was introduced in [3]| and its base-linear
system has standard second-order transfer function

2
Wy

$2 4 2Cwy,s + w?

This class of reset control systems satisfies the 3 positive-real condition (5) for all combination
of positive parameters b, ( and w,; see [9]. Therefore, from Theorem 1, these reset control
systems are BIBO stable.

(iii) It is possible that a reset control system is unstable even though its base-linear
system is stable and describing-function analysis does not predict a limit-cycle. Such an
example is given in [8].

3.1 Robustness to Implementation Errors

In (1) we implicitly assumed that the reset process is ideal; that is, the state of FORE
resets exactly to zero at the precise instant when its input e(t) is zero. Of course, this seldom
happens as exemplified by the digital implementation of reset elements where such errors
occur due to finite sampling rates and signal quantization. To account for such inaccuracies,
we modify the model of reset control accordingly to:

tp(t) = Awy(t) + Bay(t)
p(t) = —Cup(t) = bas(t) +w(t); t &1
o) = al); el
I = {t:Cx,(t) =w(t) + &), tijn—t; >0,0 >0,1=1,2,...}, (10)

where ¢; and ¢y are bounded signals modeling implementation errors. The boundedness of
€9 is necessary for y to be bounded. The following corollary states that the BIBO stability
condition in Theorem 1 remains valid even in the face of these implementation errors.



Corollary 1: The reset control system (10) is BIBO stable if it satisfies the 3 positive-real
condition (5).

Proof: The proof follows along the same lines as that in Theorem 1. After using the
state transformation (3), system (10) becomes:

(1) = Azp(t) + Bz(t)
zp(t) = =Cz(t) —bz(t); t ¢l
ze(t5) = —zpty) ta(t); tel.

Since €; is bounded, it is straightforward to show that LLemma 1 and L.emma 2 are still in
effect. Taking the same V' and following through the proof of Theorem 1 yields bounded V',
zp, and, finally, bounded y. This completes the proof. O

4 Asymptotic Analysis

In this section we show that satisfaction of the 3 positive-real condition (5) yields more
than BIBO stability. With it, we can further show that the reset control system (1) is
asymptotically stable and that it inherits the asymptotic tracking properties of its base-linear
system. In the sequel we denote the tracking error in the reset control system and its base-

linear system by
e(t) =w(t) — Cry(t); et) =w(t) — Caylt),
respectively. We first need the following technical lemmas.
Lemma 4: If lim, o ¢;(t) = 0, then

lim C'z,(t;) =0 and lim 2z¢(¢}) = 0.

t—o0 1—00

Proof: From the definition of ¢;,
Czp(t;) = w(t;) — Cxy(t;) — 0,
as i — 0o. From (2) we have
Ty (t) = —bap(t) — Cay(t) + w(t).

Since limy o0 €(t ) = 0 and b > 0, then lim, .o, z(t) = 0. From (4), z;(t)) = —z(t;) so
that limy s z4(t) = 0. O

Lemma 5: If the (3 positive-real condition (5) is satisfied and limy_,o, ¢;(t) = 0, then

(|63 - Lo )



Proof: Take V/(t) as in the proof of Theorem 1. Then, from (7),
V() S V() + [2r(t)) + BCz ()]

With M; = [z;(t}) + BC2(¢)]* and limy e €;(t) = 0, it follows from Lemma 4 that

7

lim; oo M; = 0. Thus, (9) becomes
V() < e W=Dy (0) 4 My + e My + ...+ e“0D7A) (11)

for all t € (t;,t;41]. Since V(0) = 0, then from (4) lim, ,o, V() = 0 so that

(| 0= ]) o

This completes the proof. O
We know state our asymptotic stability result.

Theorem 2: The reset control system (1) is asymptotically stable if it satisfies the (3
positive-real condition (3).

Proof: Set w(t) =0. From (11), it is straightforward to compute

M.
V(t) <sup -

where M; = |zp(t]) + BCz(t:)|?. From (4), z;(t) = —zp(t;) and from (3), Czy(t;) =
—Cxzy(t;) so that M; = [—x4(t;) — BCxy(t;)|% Therefore,
V(1) < supl—ap(t:) = BOwu (L) /(1 = 7). (12)

The right-hand side of (12) can be bounded as in
2
Ty (t)
zp(t)

for some k& > 0 and for all ¢t > 0. Since V/(¢) is a positive-definite function, then the left-hand
side of (12) can be bounded below by the norm of [z (t), z¢(t)]". Hence, there exists a
constant k; such that

[ () + BCxu(t)]* < k

zp(t) Ty (1) H
<k; su
zp(t) ||~ e [0,1030) zp(t)
for all t > 0. Therefore, from (3),
p(t) Tpi(t) H
< (k1 +1) su . 13
RGN A N P (13)




Since the base-linear system (2) is asymptotically stable and

251(0) = 2,(0); 27(0) = z4(0),

then (13) implies that (1) is Lyapunov stable. To complete the proof we need to show that
the state asymptotically converges. Since A is stable then, from (2),

: Ty (1) ] _
tli}& [ QEﬂ<t> | B 0

Therefore, from Lemma 5,

lim
t—o0

28]

showing that the states asymptotically converge. This proves the theorem. O

We now show that the base-linear system can pass on its asymptotic tracking properties
to its reset control system.

Theorem 3: Suppose the [ positive-real condition (5) is satisfied. If lim; o €;(t) = 0,
then limy_ e(t) = 0.

Proof: From Lemma 5, limy ,oo[Czy(t) — Cay(t)] = 0. Consequently, limy_,o e(t) = 0.
This completes the proof. O

Theorem 3 indicates that the classical “type k” behavior of a base-linear system is inher-
ited by its reset control system. Specifically, if (¢) and d(t) are polynomials signals of degree
no greater than k, if lim;_n(t) = 0 and if L(s) contains at least k integrators, then the
reset system (1) has zero steady-state tracking error provided it satisfies the 3 positive-real
condition (5).

5 Speed Control of a Flexible Mechanical System

In this section we apply reset control design to the speed control of the rotational flexible
mechanical system shown in Figure 2. This system consists of three inertias connected via
flexible shafts. A servo motor drives inertia .J3 and the speed of inertia J; is measured via
a tachometer. The controller is implemented using dSPACE tools [19]. A more complete
description of this experiment can be found in [18]. Besides introducing readers to some of
the details behind reset control design, one objective of this section is to demonstrate the
applicability of the main theoretical results of this paper; namely, Theorems 1-3. First, we
consider LTT feedback control.



Servo motor Tachometer
flexible shaft
u y
Amplifier leg——- dSPACE Board |eg—— Filter

Figure 2: Schematic of the rotational flexible mechanical system.

5.1 Tradeoffs in LTI feedback control

A block diagram of a linear feedback control system is shown in Figure 3 where C(s)

denotes the controller and P(s) is a transfer function model of the open-loop system from
input u to output y. Using experimental frequency-response data, we identified the plant as

46083950
(s + 1.524)(s? + 3.1s + 2820)(s% + 3.62s + 9846)

P(s) =

We pose the following specifications on a stabilizing LTI controller C(s) to illustrate the
limitations and tradeoffs in L'TT design.

1.

Bandwidth constraint: The unity-gain cross-over frequency w,, defined by |L(jw.)| = 1,
must satisfy w. > 3.

Disturbance rejection: Low-frequency disturbances are to be rejected; specifically,

‘wa) < 0.2, when w <

d(jw)

Sensor-noise suppression: High-frequency sensor noise is to be suppressed; i.e.,

y(jW)

n(jw)

< 0.3, when w > 10m7;

Asymptotic performance. Zero steady-state tracking error to constant reference r and
disturbance d signals.

Owvershoot: Overshoot in output y to a constant reference r should be less than 20%.

10



? - C(s) —— P(s)

Figure 3: Block diagram of the linear feedback system.

In terms of Bode specifications, the first two constraints translate into minimum-gain
requirements on the open-loop gain |L(jw)| at low frequencies while the third specification
places an upper bound on this gain at high frequencies. The fourth specification requires C(s)
to contain an integrator and the fifth specification requires a phase margin of approximately
45°; assuming second-order dominance.

Using classical loop-shaping techniques we were unable to meet all of the above specifi-
cations. To illustrate the tradeofls, consider two candidate, stabilizing L'TT controllers:

1281489(s + 4.483)(s2 + 3.735s + 2851)(s2 + 5.158s + 10060)
s(s2 | 205.1s + 22330)(s2 | 126.25 | 8889)(s2 | 239s + 27560)

Ci(s) =

and

1075460(s + 7)(s2 + 3.662s 1 2798)(s? | 5.419s | 9876)
s(s 4 209.6)(s + 35.8)(s? + 132.8s + 12050)(s% + 375.9s + 66930)

Figure 4 compares the Bode plots of the corresponding loops Ly (jw) = Ci(jw)P(jw) and
Lay(jw) = Cy(jw)P(jw). Loop Ly fails to satisfy the sensor-noise suppression specification at

Cy(s) =

60 T
o — L)
— . Lo(w) [
ﬁ ""m‘.__'..‘m" 2
2 Ji s S
= ..‘...".0
2 0 *_“. - -
= e
-20 1 0 = 1
10° 10 10
-80
-100 ——
) Cee -..-.. ~—_
$ 120 e
g/ '-....". " \\
2 -140 L R
£ 160 o
-180
107" 10° 10*
Frequency (Hz)

Figure 4: Bode plots of L1(jw) and La(jw).

w = 10m. This specification can be met by reducing the gain of L;(jw) as done with Le(jw).
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This is verified by the time response y to 10 Hz sinusoidal noise n in Figure 5. Since both
designs stabilize and since both low-frequency gains are constrained by the first two specifi-
cations, Bode’s gain-phase relationship [1] dictates that La(jw) must have correspondingly
larger phase lag as verified in the phase plot of Figure 4. The reduced gain in Ly(jw) comes
at the expense of a smaller phase margin and hence larger overshoot as shown in the step
responses in Figure 6. Extensive tuning of these controllers failed to yield a design meeting
all specifications. In the next subsection we synthesize a reset controller which succeeds in
making the necessary tradeofls.

0.8

—_— LTI design 1
LTI design 2

0.6

0.4

0.2

oo ® $4'00

-0.2

-0.4

ST

-0.6

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

t (seconds)

Figure 5: Comparison between LTT designs Ly and Lg of output response y to sensor noise n(t) =
sin(107t).

5.2 Reset Control Design and Analysis

Now we turn to reset control design where we exploit its potential to satisfy the above
specifications. The design procedure consists of two steps as developed in [3], [5] and [6].
First, we design a linear controller to meet all the specifications - except for the overshoot
constraint. For example, Cy(s) is a suitable choice. The second step is to select the FORE’s
pole b to meet the overshoot specification. In this respect, [Figure 5, 2] provides a guideline
for this choice. Using this tool, we select b = 14. The resulting reset control system is shown
in Figure 7.

12



14 T

iy J )
L % —— LTldesign1l
H Y . LTI design 2
12 %)

ulf

0.2

0 0.5 1 15 2 25
t (seconds)

Figure 6: Comparison between LTT designs L and Lg of output response y to constant reference
r(t) = 1.

To establish stability and steady-state performance we first check the (3 positive-real
condition (5). Since Cy(s) stabilizes, then h(s) in (5) is asymptotically stable. A simple
search and computation shows that Re[h(jw)] > 0 for all w > 0 when § = 0.008; see
Figure 8. Invoking Theorems 1-3, we conclude that this reset control system is BIBO and
asymptotically stable, and meets the asymptotic performance constraint in specification 4.

Figure 9 shows an experimental result verifying the expected steady-state performance’.

d

——O——| FORE [—® (s+14)Cy(s) —® P(s)

Figure 7: Reset control system for the flexible mechanism.

Finally, we compare the performance of the LTT (using ;) and reset control systems.
Figures 10 and 11 show that the reset control system has better sensor-noise suppression
to a 5 Hz sinusoid and to white-noise®. However, unlike the LTI tradeoff experienced by
controller Cy(s), the reset control system has comparable transient response as shown in
Figure 12.

5The steady-state oscillations in the step response of Figure 9 are due to tach-generator ripple.
6The amplification in the low-frequency spectrum in the reset control response cannot be presently ex-
plained. However, our interest is primarily in the attenuated high-frequency spectrum.
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Figure 8: Plot showing Re[h(jw)] > 0 when £ = 0.008.

t (seconds)

Figure 9: Output response y of reset control system to r(t) = 1;
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LTI design 1
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Figure 10: Comparison between reset and LTI control (using ;) of steady-state
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y to reference r(t) = 1 and sensor noise n(t) = sin(107t).

1.5

output response

power (db)
o
o

60+ 4
—— reset control design
LTI design 1
70+ 4
-80 Ll Ll
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Figure 11: Comparison between reset and LTI control (using L) of output spectra y when n is

broadband white-noise.
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Figure 12: Comparison between reset and LTT control (using L) of output response y to reference
r(t) = 1.
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6 Conclusion

This paper developed a sufficient condition (the 3 positive-real condition) for BIBO
stability for a class of reset control systems. This condition also led to a series of results
including asymptotic stability and steady-state performance. The 3 positive-real condition
was shown to be satisfied in an experimental demonstration of reset control, confirming the
observed performance as well as demonstrating its applicability.
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