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Abstract

This paper presents a local stability result for Differentiated Services (DiffServ) networks with heterogeneous
TCP flows consisting of two-level edge coloring using a token bucket, and preferentially-dropping core router.
Coloring is accomplished using a recently proposed edge mechanism to adaptively tune the token-bucket rate. The
result is stated for sources under TCP-Reno congestion control algorithm. Stability analysis of several DiffServ
networks that were tested using ns simulations is described.

I. I NTRODUCTION

The Internet was originally designed as, and by-and-large is still a framework for providing best-effort services.
Traffic is processed as quickly as possible but without any guarantee of timeliness of actual delivery. In recent
years, new applications have sprung which require some form of quality of service (QoS) guarantee from the
network. The Internet Engineering Task Force (IETF) has proposed service models and mechanisms to meet the
demand for QoS. Notably among them are the Integrated Services/Resource Reservation Protocol (RSVP) model,
the Differentiated Services (DiffServ) model, multi-protocol label switching (MPLS) and traffic engineering. Here
we focus on DiffServ which provides a scalable solution since the amount of state information is proportional to
the number of contract-paying sources rather than the total number of flows. Two per-hop behaviors (PHBs) have
been standardized by IETF, expedited forwarding (EF) [1] and assured forwarding (AF) [2]. The former is intended
to support low delay applications while the latter is intended to provide throughput differentiation among clients
according to negotiated profiles.

Our DiffServ network is based on the AF PHB. There are several traffic management and packet marking
mechanisms proposed for AF DiffServ, all sharing the following basic idea. Coloring edges employ token buckets;
packets that originally conform to bucket parameters (a function of a negotiated profile) are colored green and
excess packets remain unmarked (colored red). Core routers give preference to green packets. In the presence of
congestion, red packets are more likely to be dropped (or have their congestion notification bit set in the presence
of the Explicit Congestion Notification (ECN)) [3]. Several studies have shown that the throughput attained by a
customer is affected not only by the edge marker but also by the presence of other customer flows and propagation
delays [4]-[6]. This is because the predominance of traffic is carried by TCP (of various variants) whose congestion
avoidance mechanism reacts in a complex manner with its environment. In [7], anActive Rate Management(ARM)
mechanism was introduced to overcome this limitation. The basic idea is that the edges maintain ARMs which are
responsible for adaptively setting token bucket parameters in order to achieve minimum throughputs in the face of
changing network parameters. ns simulations in [7] demonstrated that when combined with two-level PI-AQM [8]
at differentiating cores, this ARM mechanism is able to maintain minimum throughputs at or above target rates
and is able to respond in a timely manner to fluctuations in traffic characteristics.

In this paper, using robust stability formulation, we analyze the effect of introducing this ARM mechanism into
a stable TCP-Reno network employing PI AQM at the core. Our local stability conditions highlight the interplay
between AQM and ARM and can be recast as design rules for AQM and ARM controllers. This defines the
contribution of our work. The remainder of the paper is organized as follows. In Section 2 we describe a fluid
model for the dynamics of the network. In Section 3 we develop linearized models for control design and analysis
(details are given in Appendix A), then describe general types of AQM and ARM controllers for this problem.

This work is supported by the National Science Foundation under Grant ANI-0125979.
Y. Cui is with the MIE Department, University of Massachusetts, Amherst, MA 01003; ycui@ecs.umass.edu.
Y. Chait is with the MIE Department, University of Massachusetts, Amherst, MA 01003; chait@ecs.umass.edu.
C.V. Hollot is with the ECE Department, University of Massachusetts, Amherst, MA 01003; hollot@ecs.umass.edu.



1

In Section 4, we state our main theorem that proves existence of stabilizing ARM and AQM controllers. Stability
analysis of an over-provisioned and under-provisioned DiffServ networks tested in ns is presented in section 5.
We note our parallel work in [9] which quantifies behavior of bucket-rate adaptation and preferential dropping
that guarantees minimum throughput to users under general congestion control sources that include TCP-Reno and
proportionally-fair schemes.

II. T HE DIFFSERV NETWORK MODEL

In this section, we introduce a fluid flow model for the dynamics of a DiffServ network consisting of heterogeneous
TCP-controlled sources1, AQM-controlled core router and coloring edge routers using token buckets. Our starting
point is [10] which presented a fluid flow approach for modelling TCP flows and AQM routers and the extension
in [7] to account for two-color marking at the network edge and multi-level AQM at the core. The network hasn
classes of aggregate heterogeneous flows, termedsources, each consisting ofηi identical TCP flows. Without loss
of generality, we assume that each such source is served by a separate edge that includes a token bucket with rate
Ai and sizebi >> 1. The sources feed into a core router with link capacityc and queue length denoted byq(t).
A generic TCP flow in thei-th source is characterized by its window sizeWi(t) given by

dWi(t)
dt

=
1− pi(t− τi(t))

τi(t)
− Wi(t)Wi(t− τi(t))

2τi(t− τi(t))
pi(t− τi(t)), (1)

wherepi(t) denotes the probability that ECN bit is set for thei-th source2. The average round-trip timeτi(t) is

τi(t)
4
= Tpi +

q(t)
c

, (2)

whereTpi is the i-th source propagation delay. The source instantaneous send ratexi is described by

xi =
ηiWi(t)
τi(t)

. (3)

The dynamics of the core’s buffer is described by

dq(t)
dt

= −cIq>0 +
n∑

i=1

xi, (4)

whereIq>0 is the indicator function.
Finally, we model the coloring process at an edge and multi-level AQM action at the core. To model coloring,

let fgi(t) denote the fraction of fluid fromi-th source marked green (i.e., flow within target rate) where

fgi(t) = min
{

1,
Ai(t)
xi(t)

}
,

and 1 − fgi(t) denotes the red fraction of flow (exceeding target rate). At the core,pg(t) and pr(t) denote the
probabilities that ECN marks are generated for the green and red fluids, respectively3. According to [14], we have
0 ≤ pg(t) < pr(t) ≤ 1. The i-th source’s loss probabilitypi(t) is then related to the green and red marks by

pi(t) = fgi(t)pg(t) + (1− fgi(t))pr(t).

Next, in preparation for stability analysis of the network, we derive a linearized model about equilibrium.

III. L INEARIZED NETWORK MODEL

In this section, we linearize the network model (1)-(5) about equilibrium, then form control block diagram suited
for stability analysis. We follow with the token bucket controllers and AQMs which complete description of the
closed-loop system.

1Throughout this paper the term TCP-controlled sources refers to AIMD-like sources (e.g. TCP-Reno and TCP-SACK).
2The 1− pi term in the additive part does not appear in [7], but has appeared since in several publications, e.g., [11].
3More precisely, marks are embedded in the fluid as a time varying Poisson process, and the product ofpg andpr with the green and red

fluid throughputs, respectively, determines the intensity of this Poisson process.
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A. Open-Loop Model

We begin by writing the model explicitly in terms of the bucket ratesAi:

q̇ = −cIq>0 +
n∑

i=1

ηiWi(t)
τi(t)

4
= f(q,Wi, pg, pr, Ai);

Ẇi =
1− pi(t− τi(t))

τi(t)
− Wi(t)Wi(t− τi(t))

2τi(t− τi(t))
pi(t− τi(t))

4
= gi(q,Wi, pg, pr, Ai)

where

pi(t− τi(t)) =
(

Ai

xi(t)
pg(t− τi(t))+ (1− Ai

xi(t)
)pr(t− τi(t))

)
.

Let the equilibrium state be denoted by(q̂, Ŵi, p̂g, p̂r, Âi) and denote perturbations about equilibrium by

δq , q(t)− q̂

δWi , Wi(t)− Ŵi

δpg , pg(t)− p̂g

δpr , pr(t)− p̂r

δAi , Ai(t)− Âi.

The linearized open-loop network model can be shown to be (see Appendix A for details)

δWi(s) =
∂gi

∂Ai

s− ∂gi

∂Wi

δAi(s) +
∂gi

∂pg

s− ∂gi

∂Wi

e−sτiδpg(s) +
∂gi

∂pr

s− ∂gi

∂Wi

e−sτiδpr(s) (5)

δq(s) =
n∑

i=1

∂f
∂Wi

s− ∂f
∂q

δWi(s). (6)

In Appendix B it is shown that at equilibrium, eitherδpr(s) or δpg(s) are fixed. The choice ofδpr(s) above
corresponds to an over-provisioned network. Similar relations can be derived in the under-provisioned case in terms
of pg(s). The above equations can be presented in a block diagram format as depicted in Figure 1.

B. Network Controllers

In [8], a PI-type AQM was proposed as a congestion controller at core routers. This AQM was shown to be
able to maintain buffer level at reference set point in the face of dynamic network conditions. Token buckets were
introduced in order to maintain source throughput at a target ratex. However, [10] showed that one cannot guarantee
that resulting throughputs are equal to or greater than the bucket rate. To overcome this inherent limitation, [7]
proposed a feedback structure around a token bucket termed ARM. The purpose of ARM is to regulate the token
bucket rateAi such thatxi ≥ xi (if the network is sufficiently provisioned). Indeed, following the ideas behind the
PI-AQM, the ARM controller has the structure

ARM(s) =
karm( s

zarm
+ 1)

s( s
parm

+ 1)

and is illustrated in Figure 2. Note that ARM compares source rate to its bucket rate, hence, it is necessary to
construct rate estimation. This is done using a modified TSW (Time-Slice Window) procedure [13]: the source
rate estimate is computed by measuring the number of sent packets over a fixed time periodTTSW and further
smoothed by a low-pass filterF . The transfer function representing this estimation is given by

F (s) =
a

s + a
e−sTT SW .
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Fig. 1. Block diagram of the linearized open-loop network.

DiffServ stipulates that AQMs differentiate between green packets (those within their target rates) and red packets.
The idea is to give preference to packets corresponding to sources within their target rates. We accomplish this
using a multi-level PI AQM, one for green flow and a second for the red flow, along with set points,qg

ref andqr
ref ,

respectively, as shown in Figure 3. The marking probabilities,pg andpr, for the green and red fluid, respectively, are
computed by the two PI AQM controllers,AQMg(s) andAQMr(s). Settingqg

ref > qr
ref insures that red packets

are marked before green packets [9]. We use the same controller in both loops, that is,

AQM(s) = AQMg(s) = AQMr(s) =
kaqm( s

zaqm
+ 1)

s
. (7)

Combining the open-loop network model with the ARM and AQM controllers leads to the closed-loop block
diagram of the DiffServ network shown in Figure 4. Next, we analyze local stability of this network.

IV. STABILITY OF DIFFSERV NETWORKS

In this section, we discuss the effect of ARM on stability of the DiffServ network. The network’s linearized model,
shown in Figure 4, comprises ofn heterogeneous TCP sources withn ARM loops. We now present our main result.

Theorem: Consider the linearized DiffServ network shown in Figure 4. There existAQM and
{ARMj : j = 1, . . . , n} such that the system is locally stable.

Proof. We start with a sketch of the proof. The block diagram in Figure 4 is redrawn in Figure 5 to show a nominal
(i.e., without ARMs) TCP/AQM network along with perturbations due to active ARMs. A network we comprises
of n heterogeneous TCP sources withm active ARM loops (see Appendix B), wherem < n (see [14]). The set
of active ARM loops is defined byJ , {1≤j≤n : jth ARM loop is active at equilibrium}.
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That is, ifARMi = 0, i = 1, . . . , n, then the block diagram reduces to a series connection between the open-loop
network in Figure 1 and the AQM (albeit single controller) in Figure 3. These perturbations can be combined into
a single block as shown in Figure 6. We then apply small gain arguments to establish closed-loop stability.

The nominal TCP/AQM system in Figure 5, denoted byP̂ , is described by

P̂ (s) , δp

δx̂
=

1
s− ∂f

∂q

AQM

1− 1
s− ∂f

∂q

AQM
∑n

i=1 Pi
, (8)

whereδx̃ is the total rate perturbation from nominal TCP/AQM value due to active ARMs:

δx̂ =
∑

i∈J

δx̂i, δx̂i = Pi∆iδp.

The source’s TCP transfer functionPi is given by

Pi = e−sτi
∂gi

∂p

1

s− ∂gi

∂Wi

ηi

τi
,
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with ARM-induced perturbation∆j(s):

∆j(s) =

1

s− ∂gj

∂Wj

ηj

τj

∂gj

∂Aj
ARMj ·Fj(s)

1 + 1

s− ∂gj

∂Wj

ηj

τj

∂gj

∂Aj
ARMj ·Fj(s)

.

Note that due to the∆i block, the marking probabilityδui experienced by a source with an active ARM is different
from the AQM’s δp. Finally, a simplified formulation of this system with a single perturbation block∆ is shown
in Figure 6 where

∆(s) =
∑

j∈J

Pj∆j(s),

Next, we derive upper bounds on the AQM and ARM gains guaranteeing stability ofP̂ and ∆, then provide
additional bounds on these gains such that‖P̂∆‖∞ < 1. These gain constraints are used to show that the system
in Figure 6 is stable which implies stability of the system in Figure 4.

To analyze stability of∆ it is sufficient to discuss stability of∆j as follows. We use Nyquist stability criteria
to show that there existskarmj

> 0 stabilizing∆j . ∆j can be written as this closed-loop system

∆j(s) =
L∆j

(s)
1 + L∆j

(s)
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whereL∆j
(s) is given by

L∆j
(s) =

1

s− ∂gj

∂Wj

ηj

τj

∂gj

∂Aj
ARMjFj(s)

=
1

s− ∂gj

∂Wj

ηj

τj

∂gj

∂Aj

karmj
( s

zarmj

+ 1)

s( s
parmj

+ 1)
aj

s + aj
e−sTT SWj . (9)

SinceL∆j
(s) has a pole at the origin, it is necessary that the Nyquist contourΓ includes an infinitesimal semicircle

Γε arounds = 0 described by (see Figure 7(a))

Γε , {s = εejθ; θ ∈ [−90◦, 90◦], ε → 0, ε > 0} (10)

As s traverses from−jε to +jε along Γε, θ changes from−90◦ to +90◦ counterclockwise. The corresponding
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Nyquist plot ofL∆j
(s) can be determined by evaluating (9) along (10). In the limit we have,

lim
ε→0

L∆j
(εejθ) =

1

− ∂gj

∂Wj

ηj

τj

∂gj

∂Aj

karmj

εejθ
.

The contour indentation near the originΓε is mapped byL∆j
(s) into a semi-infinite circle covering the RHP of

the complex plane. The generic Nyquist plot in Figure 7(b), which preserves its form no matter the magnitude of
karmj

> 0, is similar to that of ourL∆j
(s). Any instabilities in∆j(s) will be a result of encirclements by the

Nyquist plot ofL∆j
(s) over the rangeω ∈ (ε, +∞) ∪ (−ε,−∞). DefineL∆j

(jω) = karmj
L̃∆j

(jω). The plot of
L̃∆j

(jω) crosses the negative real-axis at frequencies in the setΩ = {ω : ∠L̃∆j
(jω) = −180◦}. Let ω1 be the

frequency such that|L̃∆j
(jω1)| = maxω∈Ω |L̃∆j

(jω)|. If karmj
< |L̃∆j

(jω1)|−1 then |L∆j
(jω)| < 1 implying

stability of ∆j . Stability of ∆ follows immediately from

karmj
<

1
|L̃∆j

(jω1)|
, j = 1, . . . , n. (11)

We follow a similar procedure to derive an upper bound on the AQM gain sufficient to stabilizeP̂ . The details

s-plane

j+ ∞

j− ∞

σ ( 1, 0)j−
0

0ω = −

0ω = +

Nyquist-plane

jω ImL

(a) (b)

ReLε
Γ

Γ

j+ ∞

j− ∞

Fig. 7. (a) The Nyquist contourΓε (b) A generic Nyquist plot of open loop transfer functionL(s).

are shown in Appendix C.
Next, we show that|P̂ (jω)∆(jω)| < 1 over the ranges[0, ω0] and [ω0,∞], whereω0 is a sufficiently small

frequency to be defined later. To this end, we now show that‖∆j(s)‖∞ = 1 which is used later. LetRe(L∆j
(jω))
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denote the real part ofL∆j
(jω) and let ω2 be the frequency whereRe(L̃∆j

(jω2)) = minω∈Γ Re(L̃∆j
(jω)).

Hence,Re(L∆j
(jω)) > −1

2 if karmj
< 2|Re(L̃∆j

(jω2))|−1
, or equivalently

∣∣∣ L∆j
(jω)

1+L∆j
(jω)

∣∣∣ < 1 [15]. Noting that

|∆j(jω)| = 1 at ω = 0 (due to the integrator), we have shown that

‖∆j(jω)‖∞ = 1 =⇒ karmj
< min

{
1

2|Re(L̃∆j
(jω2)|

,
1

|L̃∆j
(jω1)|

}
. (12)

Now consider the product|P̂ (jω)∆(jω)| over the rangeω ∈ [0, ω0]. First, we bound∆ using

|∆(jω)| =

∣∣∣∣∣∣
∑

j∈J

Pj(jω)∆j(jω)

∣∣∣∣∣∣
≤

∑

j∈J

|Pj(jω)∆j(jω)|

=
∑

j∈J

|Pj(jω)||∆j(jω)| 6
∑

j∈J

|Pj(jω)|. (13)

Then we rewriteP̂ in terms of
∑

j∈J |Pj(jω)|

P̂ =

∣∣∣∣∣∣

1
jω− ∂f

∂q

AQM(
∑n

i=1 Pi(jω))

1− 1
jω− ∂f

∂q

AQM(
∑n

i=1 Pi(jω))

∣∣∣∣∣∣

∣∣∣∣
1∑n

i=1 Pi(jω)

∣∣∣∣

and show that
∥∥∥∥∥∥

1
jω− ∂f

∂q

AQM(
∑n

i=1 Pi(jω))

1− 1
jω− ∂f

∂q

AQM(
∑n

i=1 Pi(jω))

∥∥∥∥∥∥
∞

=
∥∥∥∥

LP̂ (jω)
1 + LP̂ (jω)

∥∥∥∥
∞

= 1.

At ω = 0, due to the AQM’s integrator
∣∣∣∣∣∣

1
jω− ∂f

∂q

AQM(
∑n

i=1 Pi(jω))

1− 1
jω− ∂f

∂q

AQM(
∑n

i=1 Pi(jω))

∣∣∣∣∣∣
= 1.

Let Re(LP̂ (jω)) denote the real part ofLP̂ (jω) with the factorizationRe(LP̂ (jω)) = kaqmRe(L̃P̂ (jω)). Let
ω3 be the frequency whereRe(L̃P̂ (jω3)) = minω∈Γ Re(L̃P̂ (jω)). Hence, Re(LP̂ (jω)) > −1

2 if kaqm <

2|Re(L̃P̂ (jω3))|−1, or equivalently,
∣∣∣ LP̂ (jω)
1+LP̂ (jω)

∣∣∣ < 1 [15]. This proves that

kaqm <
1

2|Re(L̃P̂ (jω3))|
=⇒

∥∥∥∥∥∥

1
jω− ∂f

∂q

AQM(
∑n

i=1 Pi(jω))

1− 1
jω− ∂f

∂q

AQM(
∑n

i=1 Pi(jω))

∥∥∥∥∥∥
∞

= 1. (14)

It follows from (14) that

|P̂ (jω)| =

∣∣∣∣∣∣

1
jω− ∂f

∂q

AQM

1− 1
jω− ∂f

∂q

AQM(
∑n

i=1 Pi(jω))

∣∣∣∣∣∣

=

∣∣∣∣∣∣

1
jω− ∂f

∂q

AQM(
∑n

i=1 Pi(jω))

1− 1
jω− ∂f

∂q

AQM(
∑n

i=1 Pi(jω))

∣∣∣∣∣∣

∣∣∣∣
1∑n

i=1 Pi(jω)

∣∣∣∣

≤
∣∣∣∣

1∑n
i=1 Pi(jω)

∣∣∣∣ . (15)

Combining (13)-(15) we obtain

|P̂ (jω)∆(jω)| = |P̂ (jω)||∆(jω)| 6
∑

j∈J |Pj(jω)|
|∑n

i=1 Pi(jω)| . (16)
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We observe that the right-hand side of (16) is a continuous function ofω, and atω = 0 it is smaller than 1. Thus,
given any0 < ε1 ¿ 1, there exists a sufficiently small frequencyω0, such that

∣∣∣∣
∑

j∈J |Pj(jω)|
|∑n

i=1 Pi(jω)| −
∑

j∈J |Pj(j0)|
|∑n

i=1 Pi(j0)|

∣∣∣∣ ≤ ε1, |ω − 0| ≤ ω0.

Hence
∣∣∣∣
∑

j∈J |Pj(jω)|
|∑n

i=1 Pi(jω)|

∣∣∣∣ < 1, ∀ω ∈ [0, ω0].

and we proved that ifkaqm stabilizesP̂ (see Appendix C) and satisfies (14), then

|P̂ (jω)∆(jω)| < 1, ∀ω ∈ [0, ω0]. (17)

Finally, we show that|P̂ (jω)∆(jω)| < 1 over ω ∈ [ω0,∞). |L(jω)| in (24) can be expanded as follows

|L(jω)| =

∣∣∣∣∣−
1

jω − ∂f
∂q

kaqm( jω
zaqm

+ 1)

jω

n∑

i=1

e−jωτi
∂gi

∂p

1

jω − ∂gi

∂Wi

ηi

τi

∣∣∣∣∣

=

∣∣∣∣∣
1

jω − ∂f
∂q

∣∣∣∣∣

∣∣∣∣∣
kaqm( jω

zaqm
+ 1)

jω

∣∣∣∣∣

∣∣∣∣∣
n∑

i=1

e−jωτi
∂gi

∂p

1

jω − ∂gi

∂Wi

ηi

τi

∣∣∣∣∣

≤
∣∣∣∣∣

1

jω − ∂f
∂q

∣∣∣∣∣

∣∣∣∣∣
kaqm( jω

zaqm
+ 1)

jω

∣∣∣∣∣
n∑

i=1

∣∣∣∣∣e
−jωτi

∂gi

∂p

1

jω − ∂gi

∂Wi

ηi

τi

∣∣∣∣∣

=

∣∣∣∣∣
1

jω − ∂f
∂q

∣∣∣∣∣

∣∣∣∣∣
kaqm( jω

zaqm
+ 1)

jω

∣∣∣∣∣
n∑

i=1

∣∣e−jωτi
∣∣
∣∣∣∣
∂gi

∂p

∣∣∣∣
∣∣∣∣∣

1

jω − ∂gi

∂Wi

∣∣∣∣∣
∣∣∣∣
ηi

τi

∣∣∣∣ .

At ω ≥ ω0,

|L(jω)| <

∣∣∣∣
1
ω0

∣∣∣∣
∣∣∣∣∣
kaqm( jω

zaqm
+ 1)

jω

∣∣∣∣∣
n∑

i=1

∣∣∣∣
∂gi

∂p

∣∣∣∣
∣∣∣∣

1
ω0

∣∣∣∣
∣∣∣∣
ηi

τi

∣∣∣∣

=
∣∣∣∣

1
ω0

∣∣∣∣
∣∣∣∣
kaqm

zaqm
− kaqm

ω
j

∣∣∣∣
n∑

i=1

∣∣∣∣
∂gi

∂p

∣∣∣∣
∣∣∣∣

1
ω0

∣∣∣∣
∣∣∣∣
ηi

τi

∣∣∣∣

=
∣∣∣∣

1
ω0

∣∣∣∣

∣∣∣∣∣∣
kaqm

√(
1

zaqm

)2

+
(

1
ω

)2
∣∣∣∣∣∣

n∑

i=1

∣∣∣∣
∂gi

∂p

∣∣∣∣
∣∣∣∣

1
ω0

∣∣∣∣
∣∣∣∣
ηi

τi

∣∣∣∣

≤
∣∣∣∣

1
ω0

∣∣∣∣

∣∣∣∣∣∣
kaqm

√(
1

zaqm

)2

+
(

1
ω0

)2
∣∣∣∣∣∣

n∑

i=1

∣∣∣∣
∂gi

∂p

∣∣∣∣
∣∣∣∣

1
ω0

∣∣∣∣
∣∣∣∣
ηi

τi

∣∣∣∣

, Mkaqm < ∞.

Hence, over the rangeω ∈ [ω0,∞)

kaqm <
ε2
M

=⇒ |L(jω)| < ε2. (18)

From (18)

|P̂ (jω)| =
∣∣∣∣∣∣

1
jω− ∂f

∂q

AQM

1− 1
jω− ∂f

∂q

AQM(
∑n

i=1 Pi)

∣∣∣∣∣∣
<

∣∣∣∣∣∣

1
jω− ∂f

∂q

AQM

1− ε2

∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣

1
jω− ∂f

∂q

kaqm( jω

zaqm
+1)

jω

1− ε2

∣∣∣∣∣∣∣∣
.
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and to bound|P̂ | consider the product

m

∣∣∣∣
kmax

jω + pmin

∣∣∣∣|P̂ (jω)| < m

∣∣∣∣
kmax

jω + pmin

∣∣∣∣
∣∣∣∣∣

1

jω − ∂f
∂q

∣∣∣∣∣

∣∣∣∣∣
kaqm( jω

zaqm
+ 1)

jω

∣∣∣∣∣
∣∣∣∣

1
1− ε2

∣∣∣∣

< (n− 1)
∣∣∣∣
kmax

ω0

∣∣∣∣
∣∣∣∣

1
ω0

∣∣∣∣

∣∣∣∣∣∣
kaqm

√(
1

zaqm

)2

+
(
− 1

ω0

)2
∣∣∣∣∣∣

∣∣∣∣
1

1− ε2

∣∣∣∣

, M̃kaqm < ∞,

wherekmax , maxj∈J

{∣∣∣∂gj

∂p
ηj

τj

∣∣∣
}

andpmin , minj∈J

{
− ∂gj

∂Wj

}
. This proves that over the rangeω ∈ [ω0,∞)

kaqm < min
{

ε1
M

,
1
M̃

}
=⇒ |P̂ (jω)| < 1

m
∣∣∣ kmax

jω+pmin

∣∣∣
. (19)

Evaluating|∆| over ω ∈ [ω0,∞) gives

|∆| ≤
∑

j∈J

|Pj ||∆j | ≤
∑

j∈J

|Pj | =
∑

j∈J

∣∣∣∣∣e
−jωτj

∂gj

∂p

1

jω − ∂gj

∂Wj

ηj

τj

∣∣∣∣∣

≤
∑

j∈J

∣∣∣∣
kmax

jω + pmin

∣∣∣∣ = (n− 1)
∣∣∣∣

kmax

jω + pmin

∣∣∣∣ , (20)

and combining (19) and (20) results in

kaqm < min
{

ε1
M

,
1
M̃

}
=⇒ |P̂ (jω)∆(jω)| < 1, ∀ω ∈ [ω0,∞). (21)

Finally, if the ARMs gains are bounded by (12)

karmj
< min

{
1

2|Re(L̃∆j
(jω2)|

,
1

|L̃∆j
(jω1)|

}
, j = 1, . . . , n,

and the AQMs gain are bounded by (17), (19), (21) and (25)

kaqm < min

{
1

2|Re(L̃P̂ (jω3))|
,

ε1
M

,
1
M̃

,
1

|L̃(jω4)|

}

then bothP̂ and∆ are stable and‖P̂ (jω)∆(jω)‖∞ = 1. Hence, we have shown that the DiffServ network shown
in Figure 4 is locally stable ifkaqm andkarm satisfy their gain constraints. This proves that there existAQM and
{ARMj : j = 1, . . . , n} such that the system is locally stable. 2

V. I LLUSTRATIVE EXAMPLES

In this section, we apply the Theorem to analyze stability of the DiffServ network in [7]. This network consisted
of three heterogeneous sources, each served by an edge with fully-coloring ARM as shown in Figure (8). The edges
feed into a congested core with an admissible, compatible and non-overlapping differentiation ability (see Appendix
B and [9]). The propagation delaysTpi are all uniform in the ranges:Tp1 ∈ [50− 90] msec,Tp2 ∈ [15− 25] msec
and Tp3 ∈ [0 − 10] milliseconds. Each source is an aggregate ofηi generic FTP flows, all starting uniformly in
[0, 50] sec, with loadsη1 = 20, η2 = 30 andη3 = 25. The core queue has a buffer size of 800 packets and ECN
marking enabled. The source target rates arex1 = 2000, x2 = 500 andx3 = 1250 packet/second.

The same AQM controller was used for green and red flows and is given by

AQM(s) =
9.6× 10−6( s

0.53 + 1)
s

.

The set points for the red and green controllers wereqr
ref = 100 packets andqg

ref = 250 packets. The idea behind
this choice is while fully utilizing the link also minimize the possibility of the queue oscillating between these
points due to incoming flow bursts.
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Fig. 8. The simulated DiffServ network.

In [7], the ARMs are the same where

ARM j(s) =
0.05( s

0.1 + 1)
s(s + 1)

; j = 1, 2, 3.

The source rate estimator implements the modified TSW algorithm with the three buckets usingTTSW = 1
second. It is further smoothed by a first-order, low-pass filter with a corner frequency ofa = 1 rad/second with the
transfer functionF (s) of

F (s) =
1

s + 1
e−s.

We analyze stability of two implementations, an over-provisioned and an under-provisioned network.

A. Over-Provisioned Network

In the over-provisioned case, the link capacity isc = 4500 packets/second. In Appendix B it is shown that
the queue length at equilibrium is atqr

ref = 100 packets withpr < 1, pg = 0. Hence, the round trip times are
τ1 = 0.2422 second,τ2 = 0.1422 second andτ3 = 0.1122 second. According to [14],x1

α1
>

x3
α3

>
x2
α2

, where
αi = ηi

τi
. We also computei∗ = 2 (see [14]) implying that the second and the third ARMs are de-activated and

J = {1}. The generalized system block diagram in Figure 5 can be reduced in this case to the one shown in Figure
9 where the nominal TCP/AQM system is described by

P̂ (s) =
δx̂1

δpr
=

1
s− ∂f

∂q

AQM

1− 1
s− ∂f

∂q

AQM(
∑3

i=1 Pi)
,

where ∂f
∂q = −5.0914 1/second; and where the transfer functions for the individual sources are described by

P1(s) = e−sτ1
∂g1

∂pr

1

s− ∂g1

∂W1

η1

τ1

= e−s(0.2422)(−72.9144)
1

s− (−3.0248)
20

0.2422
;

P2(s) = e−sτ2
∂g2

∂pr

1

s− ∂g2

∂W2

η2

τ2

= e−s(0.1422)(−26.7843)
1

s− (−0.9483)
30

0.1422
;

P3(s) = esτ3
∂g3

∂pr

1

s− ∂g3

∂W3

η3

τ3

= e−s(0.1122)(−149.1887)
1

s− (−2.8450)
25

0.1122
.
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Fig. 9. Block diagram of the over-provisioned network.

We observe in Figure 10 that‖P̂∆‖∞ < 1, which along with stability ofP̂ and ∆ (not shown here) establishes
local stability of this DiffServ network. Further details and simulation plots can be found in [9].

B. Under-Provisioned Network

In this setup, the link capacity is 20% under provisioned wherec = 3000 packets/second. From Appendix B,
it follows that pr = 1, 0 < pg < 1,and q = qg

ref = 250 packets. The round trip times areτ1 = 0.3033 second,
τ2 = 0.2033 second andτ3 = 0.1733 second. According to [14],x1

α1
>

x3
α3

>
x2
α2

and i∗ = 1, implying that the first
ARM is de-activated andJ = {2, 3}. The generalized system block diagram in Figure 5 can be reduced in this
case to the one shown in Figure 11 where the nominal TCP/AQM system is described by

P̂ (jω) =
δx̂

δpg
=

1
jω− ∂f

∂q

AQM

1− 1
jω− ∂f

∂q

AQM(
∑3

i=1 Pi)
,

where ∂f
∂q = −4.5971 1/second; and where the transfer functions for the individual sources are described by

P1 =
δx1

δpg
= e−jωτ1

∂g1

∂pg

1

jω − ∂g1

∂W1

η1

τ1

= e−jω(0.3033)(−595.7)
1

jω − (−31.59)
20

0.3033
;

P2 =
δx2

δpg
= e−jωτ2

∂g2

∂pg

1

jω − ∂g2

∂W2

η2

τ2

= e−jω(0.2033)(−33.16)
1

jω − (−9.822)
30

0.2033
;
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Fig. 10. The magnitude Bode plot of̂P∆ (over-provisioned case).

P3 =
δx3

δpg
= e−jωτ3

∂g3

∂pg

1

jω − ∂g3

∂W3

η3

τ3

= e−jω(0.1733)(−222.4)
1

jω − (−25.8)
25

0.1733
.

Similarly to the over-provisioned case, we observe in Figure 12 that‖P̂∆‖∞ < 1, which along with stability of
P̂ and∆ (not shown here) establishes local stability of this DiffServ network. Further details and simulation plots
can be found in [7].

VI. CONCLUSIONS

We analyzed stability of DiffServ networks with heterogeneous TCP flows consisting of two-level edge coloring
using a token bucket, and preferentially-dropping core router. We have shown, in terms of gain bounds, the existence
of AQM and ARM controllers which stabilize the network. This stability result complements our earlier work in [7]
which described ns implementations and current work in [9] which quantified behavior of bucket-rate adaptation
and preferential dropping that guarantees minimum throughput to users under general congestion control sources.
We are presently working on generalization of this DiffServ architecture to networks with multiple congested cores.

APPENDIX A: L INEARIZATION

We follow the design philosophy used in [8] and design controllers based on linearized dynamics. For simplicity,
at equilibrium(qe,Wi

e, pg
e, pr

e, Ai
e), we useqe = q and so on. We have

0 = −C +
n∑

i=1

ηiWi

τi

0 = 1−
(

Ai

xi
pg + (1− Ai

xi
)pr

)
− 0.5

(
Ai

xi
pg + (1− Ai

xi
)pr

)
W 2

i

τi = Tpi +
q

C .

The linearization relies on two key approximations. First, we ignore the nested delay in the termW (t−τ)/τ(t−τ),
which is reasonable and motivated in [8]. Secondly, we assume thatmin

{
1, Ai

xi

}
= Ai

xi
, which can be enforced by
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Fig. 11. Block diagram of the under-provisioned network.

the ARM controller. Otherwise, at 1 or 0 the ARM loop is deactivated. Linearization about equilibrium gives

δ̇q(t) =
n∑

i=1

∂f

∂Wi
δWi(t) +

∂f

∂q
δq

˙δWi(t) =
∂gi

∂Wi
δWi(t) +

∂gi

∂pg
δpg(t− τi) +

∂gi

∂pr
δpr(t− τi) +

∂gi

∂Ai
δAi(t)
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Fig. 12. The magnitude Bode plot of̂P∆ (under-provisioned case).

The partial derivative terms evaluated at the operating point are given by

∂f

∂q
= −

n∑

i=1

xi

Cτi

∂f

∂Wi
=

ηi

τi

∂gi

∂Wi
=

(
Ai

ηiWi
2 −

Ai

2ηi

)
(pg − pr)− Wi

τi
pr

∂gi

∂pr
= − 1

τi
+

Ai

ηiWi
+

WiAi

2ηi
− W 2

i

2τi

∂gi

∂pg
= − Ai

ηiWi
− AiWi

2ηi

∂gi

∂Ai
= − 1

ηi

(
1

Wi
+

Wi

2

)
(pg − pr).

APPENDIX B: FIXED POINT

In [9], steady-state behavior of general DiffServ networks is investigated. Results are presented for classes of
ARMs at the edge and multi-level AQM at the core that guarantee minimum throughput to users. The particular
ARMs and AQMs used in this paper belong to the above classes. Several definitions and properties of the network
at steady-state are used in our derivations and are presented next.

• Let xi denote the target rate for thei-th source. We say that the router is over-provisioned if
∑n

i=1 xi < c,
under-provisioned if

∑n
i=1 xi > c and exactly-provisioned if

∑n
i=1 xi = c.

• In an under-provisioned casêq = qg
ref , while in an over-provisioned casêq = qr

ref .
• The marking generated by a multi-valued AQM satisfies

{
p̂r < 1 ⇒ p̂g = 0
p̂g > 0 ⇒ p̂r = 1.

(22)

• The coloring produced by an ARM satisfies
{

x̂i < xi ⇒ f̂gi = 1
x̂i > xi ⇒ f̂gi = 0.

(23)
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• In an over-provisioned network, some sources achievexi > xi, hence, due to the integrators in theARMi,
we haveAi = 0, We say that these ARM loops aredeactivated. All other ARM loops are said to beactive.
In an under provisioned network, some sources achievexi < xi, due to the integrators in the classesARMi,
Ai → ∞. We say that these ARM loops are deactivated. All other ARM loops are said to be active. Small
changes about equilibrium will not cause a change inÂi, hence, active and deactivated ARM loops remain
the same and the linearization still holds.

APPENDIX C: STABILITY OF P̂

We use Nyquist stability arguments to analyze stability ofP̂ . Recall thatP̂ is the closed-loop transfer function
of the TCP/AQM network without DiffServ as described in (8). The open-loop transfer function of

P̂ (s) , L(s)
1 + L(s)

is given by

L(s) , − 1

s− ∂f
∂q

kaqm( s
zaqm

+ 1)

s

n∑

i=1

e−sτi
∂gi

∂p

1

s− ∂gi

∂Wi

ηi

τi
. (24)

SinceL(s) has a pole at the origin, it is necessary that the Nyquist contourΓ includes an infinitesimal semicircle
Γε arounds = 0 described by (see Figure 7(a)).Ass traverses from−jε to +jε alongΓε, θ changes from−90◦ to
+90◦ counterclockwise. The corresponding Nyquist plot ofL(s) can be determined by evaluating (9) along (10).
In the limit we have

lim
ε→0

L(εejθ) =
1

−∂f
∂q

kaqm

εejθ

n∑

i=1

−∂gi

∂p

ηi

τi

1

− ∂gi

∂Wi

The contour indentation near originΓε is mapped byL(s) into a semi-infinite circle covering the RHP of the
complex plane. The generic Nyquist plot in Figure 7(b), which preserves its form no matter the magnitude of
kaqm > 0, is similar to that of ourL(s). Any instabilities inP̂ (s) will be the result of encirclements by the Nyquist
plot of L(s) over the rangeω ∈ (ε,+∞) ∪ (−ε,−∞). Define L(jω) = kaqmL̃(jω). The plot of L̃(jω) crosses
the negative real-axis at frequencies in the setΩ = {ω : ∠L̃(jω) = −180◦}. Let ω4 be the frequency such that
|L̃(jω4)| = maxω∈Ω |L̃(jω)|. If kaqm < 1

|L̃(jω4)| then |L(jω)| < 1 implying stability of P̂ . To conclude,

kaqm <
1

|L̃(jω4)|
=⇒ P̂ stable. (25)
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