Stability Analysis of a DiffServ Network Having
Two-Level Coloring at the Network Edge and
Preferential Dropping at the Core

Y. Cui, Y. Chait, and C.V. Hollot

Abstract

This paper presents a local stability result for Differentiated Services (DiffServ) networks with heterogeneous
TCP flows consisting of two-level edge coloring using a token bucket, and preferentially-dropping core router.
Coloring is accomplished using a recently proposed edge mechanism to adaptively tune the token-bucket rate. The
result is stated for sources under TCP-Reno congestion control algorithm. Stability analysis of several DiffServ
networks that were tested using ns simulations is described.

I. INTRODUCTION

The Internet was originally designed as, and by-and-large is still a framework for providing best-effort services.
Traffic is processed as quickly as possible but without any guarantee of timeliness of actual delivery. In recent
years, new applications have sprung which require some form of quality of service (QoS) guarantee from the
network. The Internet Engineering Task Force (IETF) has proposed service models and mechanisms to meet the
demand for QoS. Notably among them are the Integrated Services/Resource Reservation Protocol (RSVP) model
the Differentiated Services (DiffServ) model, multi-protocol label switching (MPLS) and traffic engineering. Here
we focus on DiffServ which provides a scalable solution since the amount of state information is proportional to
the number of contract-paying sources rather than the total number of flows. Two per-hop behaviors (PHBSs) have
been standardized by IETF, expedited forwarding (EF) [1] and assured forwarding (AF) [2]. The former is intended
to support low delay applications while the latter is intended to provide throughput differentiation among clients
according to negotiated profiles.

Our DiffServ network is based on the AF PHB. There are several traffic management and packet marking
mechanisms proposed for AF DiffServ, all sharing the following basic idea. Coloring edges employ token buckets;
packets that originally conform to bucket parameters (a function of a negotiated profile) are colored green and
excess packets remain unmarked (colored red). Core routers give preference to green packets. In the presence
congestion, red packets are more likely to be dropped (or have their congestion notification bit set in the presence
of the Explicit Congestion Notification (ECN)) [3]. Several studies have shown that the throughput attained by a
customer is affected not only by the edge marker but also by the presence of other customer flows and propagation
delays [4]-[6]. This is because the predominance of traffic is carried by TCP (of various variants) whose congestion
avoidance mechanism reacts in a complex manner with its environment. In [Xttave Rate Manageme(ARM)
mechanism was introduced to overcome this limitation. The basic idea is that the edges maintain ARMs which are
responsible for adaptively setting token bucket parameters in order to achieve minimum throughputs in the face of
changing network parameters. ns simulations in [7] demonstrated that when combined with two-level PI-AQM [8]
at differentiating cores, this ARM mechanism is able to maintain minimum throughputs at or above target rates
and is able to respond in a timely manner to fluctuations in traffic characteristics.

In this paper, using robust stability formulation, we analyze the effect of introducing this ARM mechanism into
a stable TCP-Reno network employing Pl AQM at the core. Our local stability conditions highlight the interplay
between AQM and ARM and can be recast as design rules for AQM and ARM controllers. This defines the
contribution of our work. The remainder of the paper is organized as follows. In Section 2 we describe a fluid
model for the dynamics of the network. In Section 3 we develop linearized models for control design and analysis
(details are given in Appendix A), then describe general types of AQM and ARM controllers for this problem.
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In Section 4, we state our main theorem that proves existence of stabilizing ARM and AQM controllers. Stability
analysis of an over-provisioned and under-provisioned DiffServ networks tested in ns is presented in section 5.
We note our parallel work in [9] which quantifies behavior of bucket-rate adaptation and preferential dropping
that guarantees minimum throughput to users under general congestion control sources that include TCP-Reno an
proportionally-fair schemes.

Il. THE DIFFSERV NETWORK MODEL

In this section, we introduce a fluid flow model for the dynamics of a DiffServ network consisting of heterogeneous
TCP-controlled sourcés AQM-controlled core router and coloring edge routers using token buckets. Our starting
point is [10] which presented a fluid flow approach for modelling TCP flows and AQM routers and the extension
in [7] to account for two-color marking at the network edge and multi-level AQM at the core. The network has
classes of aggregate heterogeneous flows, tesnettes each consisting of; identical TCP flows. Without loss
of generality, we assume that each such source is served by a separate edge that includes a token bucket with rai
A; and sizeb; >> 1. The sources feed into a core router with link capaeignd queue length denoted pyt).

A generic TCP flow in the-th source is characterized by its window si&(¢) given by
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whereT),; is thei-th source propagation delay. The source instantaneous seng; riatéescribed by
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The dynamics of the core’s buffer is described by
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where I~ is the indicator function.
Finally, we model the coloring process at an edge and multi-level AQM action at the core. To model coloring,
let f,i(t) denote the fraction of fluid froni-th source marked green (i.e., flow within target rate) where

. Ai(t)
fgi(t) = min {1, () } ,
and1 — f,(t) denotes the red fraction of flow (exceeding target rate). At the ggi@) and p,(¢) denote the
probabilities that ECN marks are generated for the green and red fluids, respécteglgrding to [14], we have
0 < py(t) < pr(t) < 1. Thei-th source’s loss probability;(¢) is then related to the green and red marks by
pi(t) = foi(t)pg(t) + (1 — foi(t))pr(t).

Next, in preparation for stability analysis of the network, we derive a linearized model about equilibrium.

IIl. LINEARIZED NETWORK MODEL

In this section, we linearize the network model (1)-(5) about equilibrium, then form control block diagram suited
for stability analysis. We follow with the token bucket controllers and AQMs which complete description of the
closed-loop system.

Throughout this paper the term TCP-controlled sources refers to AIMD-like sources (e.g. TCP-Reno and TCP-SACK).

2The 1 — p; term in the additive part does not appear in [7], but has appeared since in several publications, e.g., [11].

3More precisely, marks are embedded in the fluid as a time varying Poisson process, and the prpgacidgf. with the green and red
fluid throughputs, respectively, determines the intensity of this Poisson process.



A. Open-Loop Model
We begin by writing the model explicitly in terms of the bucket ratgs
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Let the equilibrium state be denoted by, Wi,ﬁg,ﬁr,fii) and denote perturbations about equilibrium by

5 = q(t)—q
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The linearized open-loop network model can be shown to be (see Appendix A for details)
0g: ggi ggi
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In Appendix B it is shown that at equilibrium, eithép,(s) or ép,(s) are fixed. The choice ofp,(s) above
corresponds to an over-provisioned network. Similar relations can be derived in the under-provisioned case in terms
of py(s). The above equations can be presented in a block diagram format as depicted in Figure 1.

B. Network Controllers

In [8], a Pl-type AQM was proposed as a congestion controller at core routers. This AQM was shown to be
able to maintain buffer level at reference set point in the face of dynamic network conditions. Token buckets were
introduced in order to maintain source throughput at a targetrtdt®wever, [10] showed that one cannot guarantee
that resulting throughputs are equal to or greater than the bucket rate. To overcome this inherent limitation, [7]
proposed a feedback structure around a token bucket termed ARM. The purpose of ARM is to regulate the token
bucket rated; such that; > z; (if the network is sufficiently provisioned). Indeed, following the ideas behind the
PI-AQM, the ARM controller has the structure

karm(ﬁ + 1)
s(z 0~ +1)

Parm

ARM(s) =

and is illustrated in Figure 2. Note that ARM compares source rate to its bucket rate, hence, it is necessary to
construct rate estimation. This is done using a modified TSW (Time-Slice Window) procedure [13]: the source
rate estimate is computed by measuring the number of sent packets over a fixed timelpefiodnd further
smoothed by a low-pass filtdr. The transfer function representing this estimation is given by

a

F(s) = ——e Trsw,
s+a
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Fig. 1. Block diagram of the linearized open-loop network.

DiffServ stipulates that AQMs differentiate between green packets (those within their target rates) and red packets.
The idea is to give preference to packets corresponding to sources within their target rates. We accomplish this
using a multi-level PI AQM, one for green flow and a second for the red flow, along with set p;ﬁg}tsandq:ef,
respectively, as shown in Figure 3. The marking probabiliggsindp,, for the green and red fluid, respectively, are
computed by the two PI AQM controllersiQM,(s) and AQM,.(s). Settingqfef > g, insures that red packets
are marked before green packets [9]. We use the same controller in both loops, that is,

Kagm (37— +1)

AQM(s) = AQM,(s) = AQM, (s) = ——eu——. ™

Combining the open-loop network model with the ARM and AQM controllers leads to the closed-loop block
diagram of the DiffServ network shown in Figure 4. Next, we analyze local stability of this network.

IV. STABILITY OF DIFFSERV NETWORKS

In this section, we discuss the effect of ARM on stability of the DiffServ network. The network’s linearized model,
shown in Figure 4, comprises afheterogeneous TCP sources witth\RM loops. We now present our main result.

Theorem: Consider the linearized DiffServ network shown in Figure 4. There ed$)M and
{ARM; : j=1,...,n} such that the system is locally stable.

Proof. We start with a sketch of the proof. The block diagram in Figure 4 is redrawn in Figure 5 to show a nominal
(i.e., without ARMs) TCP/AQM network along with perturbations due to active ARMs. A network we comprises
of n heterogeneous TCP sources withactive ARM loops (see Appendix B), whefe < n (see [14]). The set

of active ARM loops is defined by £ {1<j<n: j* ARM loop is active at equilibriurh.
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Fig. 3. The multi-level AQM control system.

Thatis, ifARM; = 0,7 = 1,...,n, then the block diagram reduces to a series connection between the open-loop
network in Figure 1 and the AQM (albeit single controller) in Figure 3. These perturbations can be combined into
a single block as shown in Figure 6. We then apply small gain arguments to establish closed-loop stability.

The nominal TCP/AQM system in Figure 5, denoted Byis described by

e rl% AQM

P(s) & X =
(5) = 5z 1— L AQM Y1 P,

(8)

wheredz is the total rate perturbation from nominal TCP/AQM value due to active ARMs:
0% = 0%, 0% = PNidp.
icJ
The source’s TCP transfer functidp is given by
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Fig. 4. The combined ARM/AQM DiffServ network.

with ARM-induced perturbation\;(s):
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Note that due to thé\; block, the marking probabilityu; experienced by a source with an active ARM is different
from the AQM’s §p. Finally, a simplified formulation of this system with a single perturbation blacks shown

in Figure 6 where

A(s) = PiAj(s),

jedJ

Next, we derive upper bounds on the AQM and ARM gains guaranteeing stabilify arid A, then provide
additional bounds on these gains such thBA ||, < 1. These gain constraints are used to show that the system

in Figure 6 is stable which implies stability of the system in Figure 4.
To analyze stability ofA it is sufficient to discuss stability of\; as follows. We use Nyquist stability criteria

to show that there exists,,,,,, > 0 stabilizingA;. A; can be written as this closed-loop system

L, (s)
i) =TT ) La (3)
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Fig. 5. Block diagram of AQM networks with active ARM loops (the perturbation blocks indexes correspond to those in the
setJ) .

where Lx, (s) is given by

1 n; Oy,

La(s) = —— 1995 sppp,
A](S) 3_68%7']' aA] R J ](S)
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SinceLa,(s) has a pole at the origin, it is necessary that the Nyquist cortancludes an infinitesimal semicircle
I'. arounds = 0 described by (see Figure 7(a))

I 2 {s=e? 6ec[-90°90°, e =0, >0} (10)

As s traverses from—je to +je alongT'., 6 changes from—90° to +90° counterclockwise. The corresponding
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Fig. 6. Simplified block diagram of the system in Figure 5.

Nyquist plot of La,(s) can be determined by evaluating (9) along (10). In the limit we have,

o 1 15095 karm,
thAj(Eeje): N5 0G5 Karm;

-0 _99; 1,0A; eed?
‘ ow; 7 J

The contour indentation near the origih is mapped byLx,(s) into a semi-infinite circle covering the RHP of

the complex plane. The generic Nyquist plot in Figure 7(b), which preserves its form no matter the magnitude of

karm, > 0, is similar to that of ourLa,(s). Any instabilities inA;(s) will be a result of encirclements by the

Nyquist plot of L, (s) over the rangev € (¢, +00) U (—¢, —00). Define L, (jw) = karijAj (jw). The plot of

EAj (jw) crosses the negative real-axis at frequencies in thé)set{w : AEAj (jw) = —180°}. Let wy be the

frequency such thatla, (jw1)| = maxgeq |La,(jw)|. If karm, < |La,(jw1)|~! then|La, (jw)| < 1 implying

stability of A;. Stability of A follows immediately from

1

< —_—

L, (jwi)

We follow a similar procedure to derive an upper bound on the AQM gain sufficient to stabilidde details

, j=1,...,n. (11)
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Fig. 7. (&) The Nyquist contoul’. (b) A generic Nyquist plot of open loop transfer functids).
are shown in Appendix C.

Next, we show thatP(jw)A(jw)| < 1 over the range$0,wo] and [wo, o], Wherew is a sufficiently small
frequency to be defined later. To this end, we now show [tRg{(s)||.. = 1 which is used later. LeRe(La, (jw))



denote the real part of,(jw) and letw, be the frequency wher@e(La (jws)) = minger Re(La, (jw)).

Hence,Re(La, (jw)) > —3% if karm, < 2|Re(iA_7. (jwz))|_1 or equwalently‘lfzi(]())‘ < 1 [15]. Noting that

|A;(jw)] =1 atw = 0 (due to the integrator), we have shown that

1 1
1A;(jw)lloc =1 = karm, < min — y T . (12)
’ 2|Re(La,(jw2)| " |La, (jwr)|
Now consider the produd(jw)A(jw)| over the rangev € [0, wo]. First, we boundA using
AGW) = D Piiw)Ai(iw)| < D 1P (jw) A, (jw)]

j€d jeJ
= D PG4 (w) < D IP(jw)| (13)

jed jeJ

Then we rewriteP in terms of 3", | P; (jw)]

o deQM(Zz 1 Pi(jw)) '
1—jw afAQM(z:Z L PiGw) | 2o 1P (jw)

and show that
ﬁAQM(Z?:l Pi(jw))
1—f%?AQMQXﬂBuw)

Jw

=1.

Izl

o0

At w = 0, due to the AQM’s integrator
Lo AQM (L, Piljw)

Jw—
1= Lo AQM(TL, P(jw)) |

Let Re(Lp(jw)) denote the real part of;(jw) with the factorizationRe(L(jw)) = kagm Re(Lp(jw)). Let
w3 be the frequency wheree(Ls(jws)) = minger Re(Lp(jw)). Hence, Re(Lp(jw)) > —3 if kagm <
2|Re(L p(jws))|~", or equwalently,}HL(](“L ‘ < 1 [15]. This proves that
) Lo AQM(SIL, Pi(jw)
kagm < = . 5 n . =1 (14)
" 2Re(Lplius))| |1 S AQM(LIL, Pi(w)
It follows from (14) that
P) o
Jw = n 5
1= @AQM(Zizl Pi(jw))
@AQM(ZZTQ Pi(jw)) ‘ ‘
L R AQM(SE, Aw) | [ Pilie)
< e 15)
XL Rlw) |
Combining (13)-(15) we obtain
o . > jes |Pi(w)
P(jw)A(jw)] = [P(w)l|Aw)] < S5 (16)

> i Pi(iw)l



We observe that the right-hand side of (16) is a continuous functien ahd atw = 0 it is smaller than 1. Thus,
given any0 < €; < 1, there exists a sufficiently small frequengy, such that

> jes 1B (Gw)|

2jes |P5(50)]

2 iz Pijw)

Hence

‘<€17 ’w_o‘g

2L RGO

ZjeJ |Pj(]w)|
)|

> i Pi(jw

’ <1, Yw € [0, wp).

wo-

and we proved that iy, stabilizesP (see Appendix C) and satisfies (14), then

Finally, we show thatP(jw)A

|P(jw)A(jw)| < 1, Yw € [0, wp].

(Jw)| < 1 overw € |wy,

(17)

00). |L(jw)| in (24) can be expanded as follows

1 kagmGE=+D I 9 1 :
IL(jw)| = ‘ o A Zeﬂwni . i
Jw — 5g ]W P P jw — o T
_Jw_ n
B I N LA vl | o L T B
Jjw — g—f; Jw i1 op jw — dgl i
< 1 kaqm(% +1) i e‘jwﬂ% 1 ni
— . 0 : o)
Jjw — 8—{; Jw P op jw — v%/ i
By T
jw — %ﬁ; Jw P jw— 29| |
At w > wy,
1 || Fagm (G- +1) d
L) < ||| R Ogi| L |m
wo Jw ap T
N kaqm _ kaqm . 891 U
wo | | Zagm w ap T
1 1 \? /1 dg; ni
- - kaqm + | =
wo Zagm w 3p T
1 1\ (1 dgi ni
S - kaqm +
wo Zagqm wo dp Ti
£ Mkogm < oo.
Hence, over the range € [wg, )
kagm < = M = |L(jw)| < €. (18)
From (18)
Kagm (22— 41)
) jwigAQM uJ+%AQM jwlg o
P ; — q — q
() o —

1— -
Jw

f%fAQM(Zi:I P)
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and to bound P| consider the product

Fagm (22 +1)

k A k 1 1
m ‘ . max ‘P(]w” < m ‘ : max . 8f fl<1771 }
JW + Pmin Jw + Pmin | | jw — 5 Jw l—e
k 1 12 1\?| 1
e S E R
wo | |wo Zagm wo 1 —e
£ Mkaqm < 00,
wherek, g, = maxjeJ{ %—%Z—f } and pin, = minje {—%}. This proves that over the rangec [wg, 00)
. e 1 . 1
Fagm < mm{A}M} — |P(jw)| < - (19)
JwtPmin
Evaluating|A| overw € [wg, 00) gives
i 00 1 n;
Al < IRIA < XoIBl = Y| n T
jeJ jeJ jeJ P jw—gw; T
k k
P e E R LR (20)
iet JwW + Pmin JwW + Pmin
and combining (19) and (20) results in
1 .
kagm < min {61, ~} = |P(jw)A(jw)| < 1, Vw € [wp, 00). (21)
M M
Finally, if the ARMs gains are bounded by (12)
. 1 1 .
ka?’mj < mim = . YT . y J = 17 -5 Ty
2|Re(La, (jw2)| |La,(jw1)]

and the AQMs gain are bounded by (17), (19), (21) and (25)

. 1 e 1 1
kagm < min —— ey ey
2|Re(Lp(jws))| M~ M |L(jws)]

then bothP and A are stable and| P(jw)A(jw)|ls = 1. Hence, we have shown that the DiffServ network shown
in Figure 4 is locally stable ik, andk,, satisfy their gain constraints. This proves that there ex@t\/ and
{ARM; : j=1,...,n} such that the system is locally stable. O

V. ILLUSTRATIVE EXAMPLES

In this section, we apply the Theorem to analyze stability of the DiffServ network in [7]. This network consisted
of three heterogeneous sources, each served by an edge with fully-coloring ARM as shown in Figure (8). The edges
feed into a congested core with an admissible, compatible and non-overlapping differentiation ability (see Appendix
B and [9]). The propagation delays, are all uniform in the range&:,; € [50 — 90] msec, T, € [15 — 25] msec
and T3 € [0 — 10] milliseconds. Each source is an aggregate)ofieneric FTP flows, all starting uniformly in
[0, 50] sec, with loads); = 20, 7, = 30 andns = 25. The core queue has a buffer size of 800 packets and ECN
marking enabled. The source target ratesagre= 2000, z, = 500 andz; = 1250 packet/second.

The same AQM controller was used for green and red flows and is given by

—6(_s
AQM(s) = 9.6 x 10%(g55 + 1)

S

The set points for the red and green controllers wgire = 100 packets anca};‘fef = 250 packets. The idea behind
this choice is while fully utilizing the link also minimize the possibility of the queue oscillating between these
points due to incoming flow bursts.
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Fig. 8. The simulated DiffServ network.
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In [7], the ARMs are the same where

0.05(51 +1)
s(s —|— 1) ’

The source rate estimator implements the modified TSW algorithm with the three bucketsTwsing= 1

second. It is further smoothed by a first-order, low-pass filter with a corner frequerncy: df rad/second with the
transfer functionF'(s) of

ARM ;(s) = i=1,2,3.

1
F(s) = e
() s+16

We analyze stability of two implementations, an over-provisioned and an under-provisioned network.

A. Over-Provisioned Network

In the over-provisioned case, the link capacitycis= 4500 packets/second. In Appendix B it is shown that
the queue length at equilibrium is af., = 100 packets withp, < 1, p, = 0. Hence, the round trip times are
71 = 0.2422 second,» = 0.1422 second andrs = 0.1122 second. According to [14]111 > 22 > i— where
al = . We also computé* = 2 (see [14]) implying that the second and the third ARMs are de-activated and
= {1} The generalized system block diagram in Figure 5 can be reduced in this case to the one shown in Figure

9 where the nominal TCP/AQM system is described by

1
L —or AQM
P(S) = = 1 ki 3 y
0pr 11—~ AQM (Y, P;)
9q
whereg—ch = —5.0914 1/second; and where the transfer functions for the individual sources are described by
0 1
Pi(s) = 67571879176 mn
Pr s — 671/%/11 T1
1 20
= ¢ 5(02422)(_72.9144 ;
‘ ( ) T (Ca.0248) 02422
0 1
Py(s) = 6_8T2ﬂ78 2
opr s — (’91%/22 T2
1 30
( )5o (—0.9483) 0.1422’
0 1
P3(3> 657-3 g3 773

Opr s — gi 73
25
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Fig. 9. Block diagram of the over-provisioned network.

We observe in Figure 10 th#tPAHoo < 1, which along with stability of? and A (not shown here) establishes
local stability of this DiffServ network. Further details and simulation plots can be found in [9].

B. Under-Provisioned Network

In this setup, the link capacity is 20% under provisioned whete 3000 packets/second. From Appendix B,
it follows thatp, = 1,0 < p;, < l,andq = qf,ef = 250 packets. The round trip times are = 0.3033 second,
7 = 0.2033 second and; = 0.1733 second. According to [14}5 > 2 > = andi* = 1, implying that the first
ARM is de-activated and/ = {2,3}. The generalized system block diagram in Figure 5 can be reduced in this
case to the one shown in Figure 11 where the nominal TCP/AQM system is described by

- 0z

| Fomz AQM
P(jw) :

Cpy 1 L AQM(SE, R
dq

whereg—f; = —4.5971 1/second; and where the transfer functions for the individual sources are described by

01 _ jur Ot 1 m

P =

% B Ipg Jw — gI/ngl !
. 1 20
— —jw(0.3033) —595.7 .
¢ ( ) 3 = (—31.59) 03033
Py = M2 enln 1
5pg 8]?9 jw — 871%2 T2
1 30

— ¢ Iw(0:2033) (33 16)

jw — (—9.822) 0.2033’
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5pg B apg Jw — Baﬁ}: T3

1 25
jw— (—25.8)0.1733"

P = 6x3—e*j“)73% 1 UE

— e Iw(0AT33) (999 4)

Similarly to the over-provisioned case, we observe in Figure 12 |tRak ||, < 1, which along with stability of
P and A (not shown here) establishes local stability of this DiffServ network. Further details and simulation plots
can be found in [7].

VI. CONCLUSIONS

We analyzed stability of DiffServ networks with heterogeneous TCP flows consisting of two-level edge coloring
using a token bucket, and preferentially-dropping core router. We have shown, in terms of gain bounds, the existence
of AQM and ARM controllers which stabilize the network. This stability result complements our earlier work in [7]
which described ns implementations and current work in [9] which quantified behavior of bucket-rate adaptation
and preferential dropping that guarantees minimum throughput to users under general congestion control sources
We are presently working on generalization of this DiffServ architecture to networks with multiple congested cores.

APPENDIXA: LINEARIZATION

We follow the design philosophy used in [8] and design controllers based on linearized dynamics. For simplicity,
at equilibrium (¢¢, W;¢, p,¢, p,¢, A;), we useq® = ¢ and so on. We have

=W

0 = —C
A, A; A; A,

0 = 1-(= 1—-"Yp, ) —05( = 1—Yp, | W2
<%m+( %W> <%m+( %m>l
q

i o= Tpi+—

T, p—i-C'

The linearization relies on two key approximations. First, we ignore the nested delay in th&{errr) /7 (t—7),
which is reasonable and motivated in [8]. Secondly, we assumerﬂm{l, ;‘—} = ’;— which can be enforced by
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Fig. 11. Block diagram of the under-provisioned network.

the ARM controller. Otherwise, at 1 or 0 the ARM loop is deactivated. Linearization about equilibrium gives

0 0
Salt) = Y oWt + S
i=1 v
_ 99 09i i vy 95y
SW;i(t) GWi(sWZ(t) + apgcﬁvg(t Ti) + aprfspr(t i) + 8AiéAz(t)
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The partial derivative terms evaluated at the operating point are given by

of =
g ; Cr;
af _
8Wl T;
dg9; A A (py — pr) — Wi
aw, = niWiQ i DPg — Dr T Dr
8gz- o l 4 Ai WZ'AZ' VVi2
opr T W 2n; 27;
99 A AW
Opg niWi 2n;
dg9; 1/1 W
24, ~ m <VV7, + 2> (pg — pr)

APPENDIXB: FIXED POINT

In [9], steady-state behavior of general DiffServ networks is investigated. Results are presented for classes of
ARMSs at the edge and multi-level AQM at the core that guarantee minimum throughput to users. The particular
ARMs and AQMs used in this paper belong to the above classes. Several definitions and properties of the network
at steady-state are used in our derivations and are presented next.

« Let z; denote the target rate for theth source. We say that the router is over-provisionedif ; z; < ¢,
under-provisioned it | z; > ¢ and exactly-provisioned " | z; = c.

« In an under-provisioned cagse= qfef, while in an over-provisioned cage= e f-

« The marking generated by a multi-valued AQM satisfies

{ﬁg>O:> pr = 1. (22)
« The coloring produced by an ARM satisfies
(Do 2 ] (23)
T, >, = fgiZO.
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« In an over-provisioned network, some sources achigve x;, hence, due to the integrators in tHer? M,
we haveA; = 0, We say that these ARM loops adeactivated All other ARM loops are said to bactive
In an under provisioned network, some sources achigve z;, due to the integrators in the classé&M/;,
A; — oo. We say that these ARM loops are deactivated. All other ARM loops are said to be active. Small
changes about equilibrium will not cause a changeljnhence, active and deactivated ARM loops remain
the same and the linearization still holds.

APPENDIXC: STABILITY OF P

We use Nyquist stability arguments to analyze stability"ofRecall thatP is the closed-loop transfer function
of the TCP/AQM network without DiffServ as described in (8). The open-loop transfer function of

- L(s)
P(s) & 222
)= L)
is given by
1 Fagm(G2 +1) & dgi 1
L(s) 2 —— aam doem (24)
5= a% 5 i=1 Op 5 — i Ti

Since L(s) has a pole at the origin, it is necessary that the Nyquist cortancludes an infinitesimal semicircle
T'. arounds = 0 described by (see Figure 7(a)).Agraverses from-je to +je alongTI',, 8 changes from-90° to
+90° counterclockwise. The corresponding Nyquist plot/gk) can be determined by evaluating (9) along (10).
In the limit we have "

lim L(ee’?) = %fk“q,’;l AL é .

e—0 -4 el — 0Op Ti — 5t

The contour indentation near origin. is mapped byL(s) into a semi-infinite circle covering the RHP of the
complex plane. The generic Nyquist plot in Figure 7(b), which preserves its form no matter the magnitude of
kaqm > 0, is similar to that of our.(s). Any instabilities inP(s) will be the result of encirclements by the Nyquist

plot of L(s) over the rangev € (e, +00) U (—e, —o0). Define L(jw) = kagmL(jw). The plot of L(jw) crosses

the negative real-axis at frequencies in the@et {w : ZL(jw) = —180°}. Let wy be the frequency such that
|L(jws)| = maxyeq |L(jw)|. If kogm < m then |L(jw)| < 1 implying stability of P. To conclude,
1 .
kagm < =——— = P stable (25)
|L(jws)l
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