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Abstract

This paper explores inherent feedback limitations of ac-
tive noise control in ducts by using a single-input, two-
output framework and observing properties of closed-
loop transfer functions. Performance is assessed using
the plant and disturbance alignment angle. We show
that the sound levels at the measurement microphone
are ampli¯ed when attenuating acoustic energy at the
error microphone. We also show that the stability mar-
gins can be improved over feedforward control using
measurements from two sensors.

1 Introduction

In recent years, the potential bene¯t of using active
noise control (ANC) in commercial applications has
driven recent academic research; e.g., see [1] and [2]. In
contrast to passive techniques, a typical ANC scheme
uses additional secondary sources and adaptive algo-
rithms to cancel noise from the original primary source
by, roughly speaking, introducing \anti-noise" - an ex-
act but out-of-phase copy of the noise. The level of
cancellation depends critically on the ability to produce
such anti-noise in the face of uncertain system dynam-
ics and noise properties. Such is the motivation for the
introduction of adaptive cancellation techniques [1] as
well as the more recent feedforward/feedback methods
[3, 4, 6].

This paper is a continuation of some of our previous
work [3]-[6] where we explore the use of non-adaptive,
¯xed-¯lter schemes for ANC in ducts. Our motivation
for using ¯xed-¯lters lies in the simplicity of implemen-
tation and availability of tools for analyzing stability
and performance. Other work using the non-adaptive
approach can be found in [7] and [8] and the references
contained therein.

The main goal of this paper is to analyze a non-
adaptive ANC design reported in [4], within the frame-
work of single-input, two-output (SITO) feedback con-
trol previously developed in [9]. This design used two
sensors (measurement and error microphones) and a
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so-called feedforward/feedback con¯guration. In Sec-
tion 3 we will show that the placement of the secondary
source, relative to the disturbance source, plays an im-
portant role in performance. In particular, we will
demonstrate, via analysis and examination of experi-
mental data collected in [4], that noise attenuation at
the error microphone must come at the expense of am-
pli¯cation at the measurement microphone. We believe
this is the ¯rst time this observation is made in the lit-
erature. Our second result, discussed in Section 4, ar-
gues that the role of feedback in ANC is not for noise
attenuation, but for stability robustness. In Section 2
we begin our discussion by describing the ANC duct
setup and the design results of [4].

2 Description of ANC setup and design results

Figure 1 illustrates a basic con¯guration of an ac-
tive noise control problem. It consists of a duct with
two loudspeakers and two microphones mounted on it.
The speaker located upstream simulates a disturbance
source that injects acoustic \noise" into the duct. A
measurement microphone detects the disturbance near
the source and the downstream error microphone mea-
sures the level of noise cancellation at a point in the
duct where noise attenuation is desired. The ANC sys-
tem uses the information provided by these two micro-
phones to generate a signal and send it to the cancel-
ing loudspeaker. The objective of the controller is to
minimize the acoustic energy at the error microphone.
In the ANC literature, the action taken on the mea-
surement microphone signal ym is referred to as \feed-
forward" 1 control, while action taken on ye is called
\feedback" control. While such terminology can be am-
biguous in the presence of acoustic feedback, we will
nevertheless retain this terminology for sake of consis-
tency. The ANC con¯guration used in [4] is similar to
that shown in Figure 1. The measurement microphone
is colocated with the disturbance source, and the can-
celling speaker is colocated with the error microphone.
The duct-length is about one meter with a diameter
of 0.1 meters. The two microphones are separated by

1The term feedforward comes from the fact that the measure-
ment microphone is located upstream i.e. closer to the distur-
bance source. Unlike a conventional feedforward control, how-
ever, the acoustic feedback from the control speaker could a®ect
closed-loop stability.
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Figure 1: ANC system in a duct.

approximately 0.8 meters of duct. Motivation for this
placement of measurement microphone and cancelling
speaker came from [8], where only ym was considered as
input to their ANC controller. Interestingly, we will see
in Section 3 (see Remark 1) that it may be preferrable
to reconsider colocating the cancelling speaker with the
disturbance { a con¯guration not recommended in [8].

With the con¯guration shown in Figure 1, a formal
design of feedforward and feedback controllers was ex-
ecuted in [4] using both H1 synthesis and QFT loop-
shaping techniques. A comparison of the experimental
open and closed-loop performance is shown in Figure
2. This ¯gure plots the magnitude frequency response
of ye due to sinusoidal excitation at d. Note that this
ANC design achieves broadband attenuation from ap-
proximately 180 - 1000 Hz with no ampli¯cation below
2000 Hz. Our subsequent analysis is driven by a desire
to understand the roles of feedforward and feedback in
this particular design.
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Figure 2: Comparison of open loop and closed-loop fre-
quency response

Our empical observations were twofold:

1. While noise attenuation was achieved at ye, as
shown in Figure 2, ampli¯cation occurs at ym. In
the next section, we will show why this occurs and
prove that this ampli¯cation is not a function of
the structure or value of the controllers, but is due
to the duct dynamics coupled with the location of

the microphones and placement of the cancelling
speaker.

2. The feedback controller Ce did not contribute
to the level of noise attenuation achieved at ye
{ this was primarily accomplished by the feed-
forward controller Cm. Indeed, the attenuation
curve in Figure 2 is only slightly perturbed when
we switched-out Ce. However, the robustness of
this performance to variations in Cm were signif-
icantly improved by the presence of the feedback
element Ce.

3 Performance analysis

In this section we analyze the performance of the ANC
design in [4]. We start by treating the duct (or plant)
as a SITO system P(s) where the input is the can-
celing speaker input u and the outputs are the micro-
phone signals ym and ye, respectively. Conversely, we
view the controller as a two-input, single-output system
C(s) with inputs ym and ye and output u. Their in-
terconnection forms the feedback control system shown
in Figure 3. The objective of this section is to analyze
the performance in ym and ye. We will show that ye
is attenuated at the expense of ampli¯ed ym. Most
importantly, this ¯nding will be shown independent of
the value or structure of the controllers (as long as ye is
attenuated). It will depend only on the con¯guration
of microphones and canceling speakers.

To start, consider Figure 3, where Ped(s), Peu(s),
Pmd(s), and Pmu(s) are the transfer functions from the
disturbance speaker to the error microphone, the can-
celing speaker to the error microphone, the disturbance
speaker to the measurement microphone, and the can-
celing speaker to the measurement microphone, respec-
tively. Let Cm(s) denote the feedforward controller and
Ce(s) the feedback controller. Further, de¯ne the plant,
controller, and disturbance transfer functions as:
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Figure 3: ANC as a single input, two output feedback
system



P(s)
4
=

∙
Pmu(s)
Peu(s)

¸
; C(s)

4
=
£
Cm(s) Ce(s)

¤
:

Pd(s)
4
=

∙
Pmd(s)
Ped(s)

¸
Assume zero input and initial conditions for the plant
transfer function, the open loop response is then

y(s)OL
4
=

∙
ym(s)
ye(s)

¸
= Pd(s)d(s):

Associated with this feedback system are several im-
portant transfer functions. These are the input and
output loop transfer functions: LI(s) = C(s)P(s) and
LO(s) = P(s)C(s), the input and output sensitiv-
ity functions: SI(s) = (1 + LI(s))

¡1 and SO(s) =
(I + LO(s))

¡1, and the input and output complemen-
tary sensitivity functions: TI(s) = LI(s)(1 + LI(s))

¡1

and TO(s) = LO(s)(I + LO(s))
¡1. The dimension of

transfer functions at the plant input are 1x1, while
those at the plant output are 2 x 2 . In our context,
the closed-loop response of interest is:

y(s)CL = SO(s)

∙
dm(s)
de(s)

¸
= SO(s)Pd(s)d(s): (1)

We then de¯ne the attenuation factor as

®(!)
4
=

jjy(j!)jjCL
jjy(j!)jjOL

=
jjSO(j!)Pd(j!)jj

jjPd(j!)jj :

In the sequel we will show that there are situations,
experienced in the setup [4] for which ®(!) must be
greater than one. First, we de¯ne the notion of align-
ment angles introduced in [9].

De¯nition 1: The plant-controller alignment angle (at
frequency !) is

Ápc(j!)
4
= cos¡1

µ jC(j!)P(j!)j
jjC(j!jjjjP(j!)jj

¶
(2)

while the plant-disturbance alignment angle is

Ápd(j!)
4
= cos¡1

µ jPH(j!)Pd(j!)j
jjP(j!jjjjPd(j!)jj

¶
: (3)

The plant and controller (plant and disturbance)
are said to be perfectly aligned if Ápc(j!) =
0± (Ápd(j!) = 0±), and completely misaligned if
Ápc(j!) = 90± (Ápd(j!) = 90±). From [Proposition
9, 9], we have the following upper and lower bounds on
the attenuation factor:

®(!) ∙p
sin2 Ápd(j!) + (cosÁpd(j!)jSI(j!)j + sinÁpd(j!)jTI(j!)j tanÁpc(j!))2

(4)

®(!) ¸p
sin2 Ápd(j!) + j cosÁpd(j!)jSI(j!)j ¡ sinÁpd(j!)jTI(j!)j tanÁpc(j!)j2:

(5)

We now state the main result of this section. Its proof
can be found in Appendix A.

Proposition 1: If jye(j!)j = 0 and Ápd(j!o) = 90±,
then

jym(j!)j
jjPd(j!)jj = ®(!) ¸

s
1 +

¯̄̄̄
Ped(j!)

Pmd(j!)

¯̄̄̄2
: (6)

From Proposition 1 we see that under perfect cancel-
lation of ye(j!), ym(j!) must be ampli¯ed if the plant
and disturbance transfer functions are completely mis-
aligned. Furthermore, if jPed(j!)j À jPmd(j!)j, then
jym(j!)j could be unacceptably large2.

Example 1: Using data from [4], we plot

Ápd(j!),
jPed(j!)j
jPmd(j!)j and the lower bound (5) in Figure 4.

At ! = 2¼(174) rad/sec, Ápd(j!) ¼ 90±, and jPed(j!)j
jPmd(j!)j

experiences its peak. From Proposition 1, we would
then predict that the closed loop response jym(j!)j is
large. This is veri¯ed in Figure 5. Thus, while jye(j!)j
was attenuated in the closed loop, it appears to come
at the expense of amplifying jym(j!)j.
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Figure 4: Ápd(j!);
jPed(j!)j
jPmd(j!)j , and lower bound (5)

Remark 1: It is interesting to observe from Figures
4 and 5 that both ym(j!) and ye(j!) are small at
frequencies where the plant and disturbance are well-
aligned; i.e., Ápd(j!) ¼ 0±. Clearly, at these frequen-
cies both the upper bound (4) and lower bound (5) col-
lapse to jSI(j!)j and the disturbance attenuation per-
formance becomes a sensitivity minimization problem.

2For example, it may be unacceptable to have the disturbance
ampli¯ed at any point in an HVAC system. The duct is a sim-
pli¯ed model of such a system.
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In other words, when Ápd(j!) = 0±, the disturbance
a®ects the outputs in the same ay as does the control
signal, and that this is favorable for disturbance rejec-
tion. Otherwise, one can only choose one of the two
outputs for disturbance attenuation, and the control
signal used to do so will act as a disturbance to the
other output.

4 Stability margins

In the last section we concentrated on performance
analysis and presented a situation where jye(j!)j was
attenuated at the expense of an ampli¯ed jym(j!)j.
Speci¯cally, we saw that jym(j!)j peaks at the fre-
quency where Ápd(j!) ¼ 90± and the ratio jPed(j!)j

jPmd(j!)j
has a maximum. So, we could expect a smaller stability
margin (or a large jjSO(j!)jj) at this frequency. There-
fore, our subsequent analysis will devote special atten-

tion to the condition Ápd(j!) ¼ 90± and jPed(j!)j
jPmd(j!)j À 1

occurring when ! = 2¼(174) rad/sec . In this sec-
tion we study the output sensitivity SO(j!), whose
size jjSO(j!)jj provides one measure of stability mar-
gin; e.g. see [10].

Case 1: (feedforward only; C(j!) = [Cm(j!) 0]) In
this case, the system's closed-loop response is given by

SO(j!) =

"
SI(j!) 0

¡ Peu(j!)
Pmu(j!)

TI(j!) 1

#
: (7)

Now, suppose jye(j!)j = 0. Then, from Lemmas 1 and
2 in Appendix A we have

jTI(j!)j = jPed(j!)Pmu(j!)j
jPmd(j!)Peu(j!)j ¼

¯̄̄̄
Ped(j!)

Pmd(j!)

¯̄̄̄2
: (8)

Thus, with jPed(j!)j
jPmd(j!)j À 1, it follows from the funda-

mental algebraic constraint SI(j!) + TI(j!) = 1 that
jSI(j!)j À 1. This in turn implies that jjSO(j!)jj À

1. Thus, whenever we use only feedforward con-
trol, C(j!) = [Cm(j!) 0], attenuation of jye(j!)j
at a frequency where both jPed(j!)j

jPmd(j!)j À 1 and plant-

disturbance are misaligned necessarily leads to a re-
duced stability margin.

Case 2: (feedforward and feedback control; C(j!) =
[Cm(j!) Ce(j!)]) Using straightforward manipula-
tions, the output sensitivity and complementary sen-
sitivity functions can be written as

SO(s) = I¡ SI(s)LO(s)
and

TO(s) = SI(s)LO(s)

where

SO(j!) =

"
SO11(j!) ¡Pmu(j!)

Peu(j!)
TO22(j!)

¡ Peu(j!)
Pmu(j!)

TO11(j!) SO22(j!)

#
(9)

and where SOij(j!) and TOij(j!) are the (i,j)th ele-
ment of SO(j!) and TO(j!), respectively. Note the
similarities and di®erences to (7). The proof of the
next propositon can be found in Appendix B.

Proposition 2: If jye(j!)j = 0, then

jTO11(j!)j =
¯̄
Pmu(j!)
Peu(j!)

¯̄¯̄̄̄
Pmd(j!)
Ped(j!)

+ Ce(j!)
Cm(j!)

¯̄̄̄ : (10)

Proposition 2 shows that for perfect cancellation,
jTO11(j!)j depends not only on plant and disturbance
transfer functions but also on both controllers. There-
fore, unlike Case 1, the ratio jPmu(j!)j

jPeu(j!)j does not impose
a constraint on jTO11(j!)j when ye(j!) = 0:

Since SO11(j!) + TO11(j!) = 1, then jTO11(j!)j À 1
implies jSO11(j!)j À 1, which, in using (9), leads to
jjSO(j!)jj À 1 and small stability margins. Note also
that jTO11(j!)j À 1 implies poor robust stability to
multiplicative uncertainty in Pmu.

Example 2: Returning to the experiments in [4], we

plot the magnitude ratios jPmu(j!)j
jPeu(j!)j and

jPed(j!)j
jPmd(j!)j in

Figure 6. The magnitude of each element of the out-
put sensitivity SO(j!) is shown in Figure 7 for the
case C(j!) = [Cm(j!) 0]: At ! = 2¼(174) rad/sec,

Ápd(j!) ¼ 90± (see Figure 4), and jPed(j!)j
jPmd(j!)j = 3:7 (from

Figure 6). So, by (8), jTI(j!)j ¼ (3:7)2 = 13:7. From
the algebraic constraint, jSI(j!)j is commensurately
large. The data yields jjSOjj ¼ 13, which compares
favorably with the preceeding analysis.

Now consider C(j!) = [Cm(j!) Ce(j!)]. Figure 8
shows the magnitude of the four elements of SO(j!).
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We can compute jTO11(j!)j directly using Proposition
2, though it is easier to see from (9) that jTO11(j!)j =
jPmu(j!)j
jPeu(j!)j jSO21(j!)j. At ! = 2¼(174) rad/sec, the data
from Figure 6 and Figure 8 gives jPeu(j!)j

jPmu(j!)j = 0:4 and

jSO21(j!)j = 1:7, resulting in jTO11(j!)j = 1:7
0:4 = 4:25.

This implies that the size of jSO11(j!)j is compara-
ble. This is con¯rmed in Figure 8, where jSO11(j!)j =
jjSOjj ¼ 6; a signi¯cant improvement over jjSOjj ¼ 13
using just feedforward control.

5 Conclusions

In this paper we have analyzed stability and perfor-
mance of ANC in a duct using the SITO formulation.
We derived a lower bound on closed-loop sound pres-
sure level that depends only on open-loop transfer func-
tions. We proved that using only feedforward controller
imposes inherent limitations on the achievable closed-
loop performance. We also show that this limitation, in
terms of stability margin, can be alleviated when both
feedforward and feedback controllers are used. At this
point we have not discussed how to design the con-
trollers to achieve the performance objective. This will
be a topic for further research. Another interesting
research direction is to study the relation of plant -
disturbance alignment angle to the sensor and actua-

tor con¯gurations so that we can choose the setup that
gives the best overall performance.

6 Appendices

A. Proof of Proposition 1: First we need some lem-
mas.

Lemma 1: Given !, ye(j!) = 0 if and only if

TO21(j!)¡
³
1¡ Peu(j!)

Pmu(j!)
TO12(j!)

´ Ped(j!)
Pmd(j!)

= 0:

(11)
For the special case when Ce(j!) = 0:

TI(j!) =
Ped(j!)Pmu(j!)

Pmd(j!)Peu(j!)
: (12)

Proof: From (1) we have

ye(j!) = SO21(j!)Pmd(j!) + SO22(j!)Ped(j!)

= ¡TO21(j!)Pmd(j!) + (1¡ TO22(j!))Ped(j!)

= ¡TO21(j!)Pmd(j!)+
µ
1¡ Peu(j!)
Pmu(j!)

TO12(j!)

¶
Ped(j!):

Letting ye(j!) = 0 yields (11). Equation (12) follows
from Ce = 0 which, in turn, implies TO12(j!) = 0 and

TO21(j!) =
Peu(j!)
Pmu(j!)

TI(j!). 2

Lemma 2: Suppose Ápd = 90
±. Then,

Pmu(j!)

P eu(j!)
= ¡ Ped(j!)

Pmd(j!)
(13)

and jPmu(j!)j
jPeu(j!)j =

jPed(j!)j
jPmd(j!)j (14)

independent of the controller3.

Proof: Substitute Ápd = 90
± into (3). 2

We need the following notation (see [9]) for stating
Lemma 3:

~P(j!)
4
= P(j!)=jjP(j!)jj

~P?(j!)
4
= [¡p2(j!) p1(j!)]=jjP(j!)jj

~C(j!)
4
= C(j!)=jjC(j!)jj

~C?(j!)
4
= [¡c2(j!) c1(j!)]

T =jjC(j!)jj

tanÁpc(j!)
4
=

j~C?H(j!)~P(j!)j
j~C(j!)~P(j!)j

4
=

j~C(j!)~P?H(j!)j
j~C(j!)~P(j!)j

3Overbar denotes complex conjugate.



Lemma 3: Suppose Ápd = 90
± and ye(j!) = 0. Then,

jTI(j!)j tanÁpc(j!) = jPed(j!)j
jPmd(j!)j : (15)

Proof: We will only show for the more general case
C(j!) = [Cm(j!) Ce(j!)]. The situation C(j!) =
[Cm(j!) 0] would then follow directly by setting
Ce(j!) = 0. The statement in Lemma 3 is equivalent
to

ye(j!) = 0; Ápd = 90
±

)
¯̄̄̄
jTI(j!)j tanÁpc(j!)¡

¯̄̄̄
Ped(j!)

Pmd(j!)

¯̄̄̄ ¯̄̄̄
= 0:

To simplify notation, the dependence on ! is omitted.
Then,

jTI j tanÁpc = jTI j j
~C~P?H j
j~C~Pj = jTI j j ¡ Cm

¹Peu + Ce ¹Pmuj
jCmPmu + CePeuj ;

jTI j tanÁpc =

¯̄̄̄
¡
¹Peu
Peu

TO21 +
¹Pmu
Pmu

TO12

¯̄̄̄
:

Therefore, ¯̄̄̄
jTI j tanÁpc ¡

¯̄̄̄
Ped
Pmd

¯̄̄̄ ¯̄̄̄
=¯̄̄̄ ¯̄̄̄

¡
¹Peu
Peu

TO21 +
¹Pmu
Pmu

TO12

¯̄̄̄
¡
¯̄̄̄
Ped
Pmd

¯̄̄̄ ¯̄̄̄
:

Applying Lemma 1 and rearranging terms gives¯̄̄̄
jTI j tanÁpc ¡

¯̄̄̄
Ped
Pmd

¯̄̄̄ ¯̄̄̄
=

¯̄̄̄ ¯̄̄̄
¡
¹Peu
Peu

Ped
Pmd

+

µ ¹Peu
Pmu

Ped
Pmd

+
¹Pmu
Pmu

¶
TO12

¯̄̄̄
¡
¯̄̄̄
Ped
Pmd

¯̄̄̄ ¯̄̄̄
:

Now ,at Ápd = 90
±, we use Lemma 2 to obtain¯̄̄̄
jTI j tanÁpc ¡

¯̄̄̄
Ped
Pmd

¯̄̄̄ ¯̄̄̄
=

¯̄̄̄ ¯̄̄̄
¹Peu
Peu

¹Pmu
¹Peu

+

µ
¡

¹Peu
Pmu

¹Pmu
¹Peu

+
¹Pmu
Pmu

¶
TO12

¯̄̄̄
¡
¯̄̄̄
Pmu
Peu

¯̄̄̄ ¯̄̄̄
=

¯̄̄̄ ¯̄̄̄
¹Pmu
Peu

¯̄̄̄
¡
¯̄̄̄
Pmu
Peu

¯̄̄̄ ¯̄̄̄
= 0:

2

We can now prove Proposition 1. Without loss of gen-
erality, assume jd(j!)j = 1. From (1), ye(j!) = 0
implies

jym(j!)j
jjPd(j!)jj =

jjSO(j!)Pd(j!)jj
jjPd(j!)jj = ®(!):

Applying Lemma 3 and Ápd = 90
± to the lower bound

(5) gives

®(!) ¸
s
1 +

¯̄̄̄
Ped(j!)

Pmd(j!)

¯̄̄̄2

and (6) follows. 2

B. Proof of Proposition 2: Since TO11 =
Peu
Pmu

TO21,
then,

TO11 =

µ
1¡ Peu

Pmu
TO12

¶
Ped
Pmd

Pmu
Peu

=

µ
1¡ CePeu

CmPmu
TO11

¶
Ped
Pmd

Pmu
Peu

:

Rearranging givesµ
1 +

CePed
CmPmd

¶
TO11 =

Ped
Pmd

Pmu
Peu

and (10) follows. 2
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