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Abstract

In this paper we study disturbance attenuation problems for single-input, two-output (SITO)

plants. The set of all stabilizing controllers are parametrized using two independent Youla

parameters. It is then shown that tradeoffs encountered in single-loop systems can be avoided

when using a second plant output for feedback.
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1 Introduction

Disturbance attenuation is a classic performance objective dating back to Bode [1] who stud-

ied the use of feedback to reduce the effect of disturbance at the plant’s output. The closed-loop

response to an output disturbance is governed by the sensitivity function, which can be reduced

by high-gain feedback. It is now well-known that a plant ’s RHP poles and zeros and its rela-

tive degree, as well as bandwidth limitations, impose constraints on sensitivity minimization [2].

Recent research on vibration and noise control applications [3] shows that improved disturbance

attenuation is achieved when the measured output, used for feedback, is not collocated with the

performance output. Research in [4]-[9] focused on inherent limitations of feedback systems due to

physical attributes such as plant/controller structures and sensors/actuators configurations. Re-

sults were reported for a variety of applications where such limitations imposed severe constraints

on closed-loop performance that could be avoided by feeding back an additional measurement. This

is also related to cascade control architectures [10] commonly implemented in industrial applica-

tions; e.g., the use of inner velocity feedback in servomechanisms. Another interesting case is the

inverted pendulum example in [4] where it was shown that stability margins and performance were

significantly improved when both the cart position and the rod angle were fed back.

It turns out that systems studied in the references cited above can be formulated as disturbance

attenuation problems having a SITO feedback structure shown in Figure 1. The SITO plant has a

single input u and two outputs: the performance output z and the measured output y. The plant

is then described by the two transfer functions Pzu and Pyu. The disturbance signal d affects these

outputs via the disturbance transfer functions Pzd and Pyd. Our objective is to design a controller

to attenuate the effect of disturbance d on performance output z.

This paper is motivated by our previous research on active noise control (ANC) in ducts [6]. A

disturbance source generates noise that propagates along a duct. The goal in [6] was to design a

controller, acting on a single plant measurement, to attenuate noise in the duct. We showed that

limitations existed in such a single-sensor design, and, that stability margins could be improved by

using a two-input single-output (TISO) control. The analysis was based on algebraic constraints of

closed-loop properties at certain frequencies. However, we did not provide constructive explanation
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Figure 1: A SITO plant with output disturbance.

on how the additional feedback from performance microphone actually benefits the closed-loop

system. The analysis in [6] focused only on the case of perfect cancellation, and the expression

for the TISO case did not reveal the contribution from each controller. In this paper we address

the issue with more pith by analyzing the general disturbance attenuation problem and treating

perfect cancellation as a special case. Moreover, by exploiting a scheme to factorize the closed-

loop system as a function of two independent parameters, we provide additional insights into the

TISO controller structure that suggest a “synthesis approach” to cope with tradeoffs between

performance and stability robustness. In many cases, we show that closed-loop transfer functions

quantifying such tradeoffs can be expressed as a product of two factors, each with independent

synthesis parameter.

The paper is organized as follows: Section 2 presents mathematical background. The main ma-

chinery used is the factorization approach developed in [11]. Section 3 formulates our disturbance

attenuation problem into the standard modern control form. In Section 4 we study the parame-

trization of all stabilizing controllers of the SISO and TISO types. For the latter, a block diagram

manipulation is proposed to transform the SITO feedback system to a two-parameters control

scheme. The closed-loop transfer matrices are then described as affine functions of free parmeters

ranging over all proper and stable rational functions. With this set of stable closed-loop systems

we address the disturbance attenuation problem in Section 5. In Section 6 we give a simulation

example by applying the analysis to the problem of ANC in ducts.
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2 Preliminaries

Let R(s) denote the set of rational functions of a complex variable s with real coefficients. Let

RH∞ denote the subset of R(s) consisting of all proper and stable rational functions. M(RH∞)

is the set of matrices with elements in RH∞. Recall that two polynomials f(s) and g(s) with

real coefficients are coprime if their greatest common divisor is 1. We can extend this definition to

two functions f(s), g(s) ∈ RH∞. It follows that f and g are coprime (over RH∞) if there exists
a, b ∈ RH∞ such that the Bezout identity

fa+ gb = 1

holds. Two matrices F andG ∈M(RH∞)1 are right-coprime if they have equal number of columns
and there exists matrices A and B ∈M(RH∞) such that

[A B]

 F

G

 = AF+BG = I.

Likewise, two matrices F̃ and B̃ ∈ M(RH∞) are left-coprime if they have equal number of rows
and there exists matrices A and B ∈M(RH∞) such that

[F̃ G̃]

 A
B

 = F̃A+ G̃B = I.

3 Problem Statement

The disturbance attenuation problem described in Section 1 and shown in Figure 1 can be

formulated into the standard configuration shown in Figure 2 where

G =

 Gzd Gzu

Gyd Gyu


is the generalized plant and C is the controller to be synthesized. The input to C is either the

measured output y (SISO case) or both outputs y and z (TISO case). Let Gzd, Gzu, Gyd and Gyu
1Matrices are denoted using boldface font.
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Figure 2: A modern control design paradigm.

denote the transfer functions between the indicated inputs and outputs. Since Gzd = Pzd and

Gzu = Pzu, the closed-loop transfer function from disturbance input d to performance output z is

Tzd = Pzd + PzuC(I−GyuC)
−1Gyd. (1)

In general design specifications are frequency dependent. For example, in ANC applications we

usually deal with low-frequency disturbance signals. In such case an appropriate weighting function

Wp(s) can be defined. The performance objective can then be stated as

|Wp(jω)Tzd(jω)| ≤ 1, ∀ω. (2)

This is the simplest description for the disturbance attenuation problem where our only concern

is to minimize the closed-loop response to disturbance. In real applications it is impractical to

disregard other issues such as stability robustness or limitations on control actuator effort. These

supplementary objectives may be included in the performance output (vector) z.

4 Parametrization of All Stabilizing Controllers

In this section we apply the concept of of parametrization of all stabilizing controllers from

[11] to our problem. We begin our analysis with the case of using only measurement output y as

feedback.
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4.1 SISO Controller

Consider the SISO feedback system shown in Figure 3. Let di denote an input disturbance signal

while dz and dy are output disturbances. Since Pzd and Pyd are outside the feedback loop, they

cannot destabilize the closed-loop system. The system in Figure 3 is then described by
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Σ
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Figure 3: Disturbance attenuation using only measurement output y.


z

y

u

 =

dz

dy

di

+

0 0 Pzu

0 0 Pyu

0 −Cy 0



z

y

u

 , (3)

which yields 
z

y

u

 =

1

−PzuCy
1+PyuCy

Pzu
1+PyuCy

0 1
1+PyuCy

Pyu
1+PyuCy

0
−Cy

1+PyuCy
1

1+PyuCy



dz

dy

di

 . (4)

Define

H(P,C)
4
=


1

−PzuCy
1+PyuCy

Pzu
1+PyuCy

0 1
1+PyuCy

Pyu
1+PyuCy

0
−Cy

1+PyuCy
1

1+PyuCy

 . (5)

Then, Cy stabilizes Pyu if and only if H(P,C) ∈M(RH∞). Now we state without proof a theorem
from [11], which provides a parametrization of all controllers that stabilize H(P,C).
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Theorem 1: Suppose Pyu ∈ R(s). Factorize Pyu as nyud−1yu where nyudyu ∈ RH∞ are coprime.
Select a, b ∈ RH∞ such that anyu + bdyu = 1. Then, the set of all compensators that stabilize Pyu,

denoted by S(Pyu), is given by

S(Pyu) =

½
Cy =

a+ rdyu
b− rnyu : r ∈ RH∞ and b− rnyu 6= 0

¾
. (6)

Applying this controller description to (4) yields
z

y

u

 =

1 −Pzudyu(a+ rdyu) Pzudyu(b− rnyu)
0 dyu(b− rnyu) nyu(b− rnyu)
0 −dyu(a+ rdyu) dyu(b− rnyu)



dz

dy

di

 . (7)

The net effect of Theorem 1 is that, both the set of all stabilizing controllers and the corre-

sponding closed-loop system matrices can be parameterized in terms of a single “free” parameter

r ∈ RH∞ which ranges over all proper and stable transfer functions. Moreover, the closed-loop

transfer matrices H(P,C) become an affine function of this parameter.

4.2 TISO controller

Now consider the case when both the measurement and performance outputs are used as feedback

as shown in Figure 4. We have a second controller Cz closing the loop from performance output z.
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Figure 4: Disturbance attenuation using a TISO controller.
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With some straightforward calculation we can describe the closed-loop system as
z

y

u

 =W(P,C)


dz

dy

di

 (8)

where

W(P,C)
4
=

1

1+ PyuCy + PzuCz


1+ PyuCy −PzuCy Pzu

−PyuCz 1+ PzuCz Pyu

−Cz −Cy 1

 .
We want to represent the closed-loop system as a function of two free parameters. One way

to do so is to manipulate the block diagram in Figure 4 into the two-degree-of-freedom scheme

shown in Figure 5(a). To handle unstable C1, we use the representation suggested in [11] by letting

(d̃c, [ñc1 ñc2]) be a left-coprime factorization of C = [C1 C2]. Then, with the factorization of

P = npd
−1
p the block diagrams in Figure 5(a) and Figure 5(b) are equivalent. We will exploit the

latter in our analysis.

ΣC1 Pu
y+

C2

-

(a)

u1

u3

Σ dp

Σ

Σ

u2+

+

+

-

(b)

np

-1
dc

-1

nc2

nc1
~ ~

~

y2

y1

+

+

Figure 5: A two-parameter control scheme.

Proposition 1: The two-parameter scheme in Figure 5(a) with C = [C1 C2] can be represented

by the block diagram in Figure 5(b), with (d̃c, [ñc1 ñc2]) left-coprime.
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Proof: For any C1 and C2, we can find their coprime factorizations as C1 = d−11 n1 and

C2 = d−12 n2, with n1, n2, d1, d2 ∈ RH∞ and d1, d2 proper. Select d̃c as a least common multiple

of d1 and d2. We factorize d1 and d2 as d1 = CB and d2 = CA such that C contains all common

zeros of d1 and d2. Then d̃c = Ad1 = Bd2 is a least common multiple of d1 and d2. Note that A

and B are coprime, since by construction they have no common zeros in the extended RHP2 [11].

Then, we select [ñc1 ñc2] = [An1 Bn2].

Now we show that (d̃c, [An1 Bn2]) is left-coprime. From the coprimeness of (n1, d1), (n2, d2)

and (A,B) there exist D,E,F,G,X, Y ∈ RH∞ such that Dn1 + Ed1 = 1, Fn2 + Gd2 = 1, and

XA+ Y B = 1. Together with d̃c = Ad1 = Bd2, we have

XADn1 +XEd̃c = XA

Y BFn2 + Y Gd̃c = Y B.

It is then easy to verify that

[An1 Bn2]

 XD
Y F

+ d̃c(XE + Y G) = XA+ Y B = 1.
Hence (d̃c, [An1 Bn2]) are left-coprime. 2

Now we state a scalar version of Theorem 5.6.15 in [11].

Theorem 2: Consider the two-parameter scheme in Figure 5(b). Let (dp, np) be a coprime

factorization of P and (d̃c, [ñc1 ñc2]) be a left-coprime factorization of C = [C1 C2]. Select

a, b ∈ RH∞ such that anp+ bdp = 1. Then the set of all two-parameter compensators that stabilize

P is given by

S2(P ) =
©
C = (b− rnp)−1[q a+ rdp] : q, r ∈ RH∞ and b− rnp 6= 0

ª
. (9)

The set of all possible stable transfer matrices from (u1, u2, u3) to (y1, y2) in Figure 5(b) is repre-

sented by  dpq dp(b− rnp)− 1 −dp(a+ rdp)
npq np(b− rnp) −np(a+ rdp)

 . (10)

2That is, closed right half-plane together with the point at infinity.
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Proof: The proof is similar to [11] so only a sketch is included here for reference. The theorem

is based on the following Lemma.

Lemma 1: Let (np, dp) be a coprime factorization of P and let (d̃c, [ñc1 ñc2]) be a left-coprime

factorization of C = [C1 C2]. Then, the system of Figure 5(b) is stable if and only if

d̃cdp + ñc2np = k (constant). (11)

Then, from Theorem 1, the set of all stabilizing controller d̃−1c ñc2 equal (b − rnp)−1(a + rdp) for
r ∈ RH∞ such that (b − rnp) 6= 0. Since Lemma 1 shows that closed-loop stability cannot be

affected by ñc1, we are allowed to choose ñc1 as another free parameter q ∈ RH∞. This gives
immediately the set S2(P ) in (9). (10) follows by direct computation. 2

Theorem 2 states that the transfer matrix from (u1, u2, u3) to (y1, y2) involves two independent

parameters q and r. In the sequel we will show how this additional degree of freedom helps in

our disturbance attenuation problem. In order to do so, we need to transform our SITO feedback

system to an equivalent form as in Figure 5(b). The following corollary can help simplify the

process.

Corollary 1: Let (n1, d1) and (n2, d2) be coprime factorizations of the controller C1 and C2

in Theorem 2. Then the two-parameter scheme cannot stabilize P unless d2 is a multiple of d1.

Proof: A necessary condition for (11) in Lemma 1 is that d̃c and ñc2 are coprime. From the

constructive proof of Proposition 1, it follows that d̃c = Bd2 and ñc2 are coprime if and only if B

is a constant. Hence d̃c = Ad1 = d2 must be a least common multiple of d1 and d2. This implies

d2 is a multiple of d1. 2

Remark 1: We can conclude from Corollary 1 that, for the two-parameter controller C =

[C1 C2] to stabilize P , every RHP pole of C1 must also be a pole of C2 with at least the same

multiplicity.

We are now ready to transform our SITO feedback system into an equivalent two-parameter

form. The manipulation steps are shown in Figure 6. Step (a) to (b) is a straightforward block-

diagram reduction. Note that in step (b) we have a two-parameter representation identical to

9
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Figure 6: Block diagram manipulation steps to a 2-parameter form of Figure 5(b).

that of Figure 5(a), with C† = [C1 C2] =
h
− Cz(1+PyuCy)
1+PyuCy+PzuCz

Cy

i
. Let (nc1, dc1) and (ncy, dcy)

be coprime factorizations of C1 and Cy, respectively. Using the method suggested in the proof of

Proposition 1, we can construct C† = d̃−1c [ñc1 ñc2] with d̃c = Ad1 = Bdcy as a least common

multiple of d1 and dcy, and with [ñc1 ñc2] = [−Anc1 Bncy]. However, Corollary 1 implies that

B should be a constant. Without loss of generality we set B = 1. Hence the final two-parameter

scheme in Figure 6(c) is represented by C† = d̃−1c [ñc1 ñc2], with

d̃c = dcy; [ñc1 ñc2] = [−Anc1 ncy].

From Proposition 1, (d̃c, [ñc1 ñc2]) are left-coprime.

Theorem 2 can now be invoked to yield the set of all stabilizing controllers C† represented by

(9). With some routine calculations, the set of all stabilizing controllers C = [Cz Cy] in our original

setup is found to be

Cz =
q

(b− rnyu)(1− qdyuPzu) ;
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Cy =
a+ rdyu
b− rnyu (12)

provided that (b−rnyu) 6= 0, (1−qdyuPzu) 6= 0. With this set of controllers, the closed-loop transfer
matrix from (dz, dy, di) to (z, y, u) in (8) becomes

z

y

u

 =W(P,C)


dz

dy

di

 (13)

with

W(P,C) =


1− Pzudyuq −Pzudyu(a+ rdyu)(1− Pzudyuq) Pzudyu(b− rnyu)(1− Pzudyuq)
−nyuq dyu(b− rnyu)(1− Pzudyuq) + Pzudyuq nyu(b− rnyu)(1− Pzudyuq)
−dyuq −dyu(a+ rdyu)(1− Pzudyuq) dyu(b− rnyu)(1− Pzudyuq)

 .

5 Disturbance attenuation and stability robustness

The analysis in the last section allows us to compare SISO and TISO controllers. We will

demonstrate that the tradeoffs between attenuation performance and stability margins, normally

difficult to overcome by a SISO design, can be alleviated by the additional degree of freedom

provided by a TISO controller.

Recall from the problem statement in Section 3 that our objective is to minimize Tzd, the

transfer function from output disturbance d to performance output z. We are less interested in the

input disturbance so we set di = 0. Furthermore, in this paper we concentrate only on the case

of stable plant Pyu. Suppose Pyu is stable, then we can choose (nyu, dyu) = (Pyu, 1) as a coprime

factorization and take a = 0, b = 1 to satisfy the Bezout identity anyu + bdyu = 1. Substituting

into (6),(7),(12), and (13) and removing the elements that correspond to di, we have the following

descriptions for controllers and closed-loop systems:

SISO case:

Cy =
r

1− rPyu ; (14)
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
z

y

u

 =

1 −rPzu
0 1− rPyu
0 −r


 dz
dy

 . (15)

TISO case:

Cz =
q

(1− rPyu)(1− qPzu) ;

Cy =
r

1− rPyu ; (16)


z

y

u

 =

1− qPzu −rPzu(1− qPzu)
−qPyu (1− rPyu)(1− qPzu) + qPzu
−q −r(1− qPzu)


 dz
dy

 . (17)

By noting that dz = Pzdd and dy = Pydd, we have the expressions for Tzd as

SISO case:

Tzd−SISO = Pzd − PzurPyd (18)

TISO case:

Tzd−TISO = (Pzd − PzurPyd)(1− qPzu). (19)

Disturbance attenuation for the SISO controller case then reduces to a standard model-matching

problem [12]; that is, given Pzd, Pzu, Pyd ∈ RH∞, find r ∈ RH∞ such that ||Pzd − PzurPyd||∞ is

minimized. In the TISO controller case we have another factor (1− qPzu) in the expression, which
depends solely on the second free parameter q ∈ RH∞.

Consider a more practical problem where we not only want to have a good disturbance at-

tenuation performance, but also require that the closed-loop system is robust to uncertainties like

modeling and measurement errors. Using standard unstructured uncertainty analysis [12], it can be

shown that stability robustness to multiplicative uncertainty in Pyu can be quantified by the H∞

norm of the complementary sensitivity transfer function in the output y loop. Since the element

(2,2) in the closed-loop transfer matrices of (15) and (17) are the sensitivity transfer functions from

dy to y, denoted by Sy(s). The complementary sensitivity Ty(s) then equals 1− Sy(s); i.e.,

12



SISO case:

Ty−SISO = rPyu (20)

TISO case:

Ty−TISO = rPyu(1− qPzu). (21)

Suppose we want to have strong disturbance attenuation and stability robustness to multiplica-

tive uncertainty in Pyu. This translates to simultaneous minimization of ||Tzd||∞ and ||Ty||∞. We
demonstrate the difficulty of such problem in the special case of perfect cancellation ||Tzd||∞ = 0.

5.1 Perfect Cancellation of Output Disturbances

By perfect cancellation we refer to the case where the performance output response z from dz

and dy are exactly zero. Even though this situation cannot occur in practice, we study it to gain

insight into the benefit from using the performance output as feedback. From (18) and (19), perfect

cancellation can be achieved if we can find r ∈ RH∞ such that

r =
Pzd

PzuPyd
. (22)

In the SISO case, substituting this r into (20) gives

Ty−SISO =
PzdPyu
PzuPyd

. (23)

Hence ||Ty||∞ depends solely on the magnitude of open-loop plant and disturbance transfer functions.
However, when using the TISO controller, substituting r in (22) to (21) yields

Ty−TISO =
PzdPyu
PzuPyd

(1− qPzu). (24)

The additional free parameter q can be used to favorably affect ||Ty||∞.

6 Example: Active Noise Control

To provide a concrete example, we apply our analysis to an ANC problem in an acoustic duct.

This disturbance attenuation application remains a challenging control problem. In theory the
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duct dynamics represents a distributed-parameter system consisting of infinite numbers of lightly-

damped modes. We have shown in [7] the tradeoff between stability and performance is sensitive

to sensor and actuator placements. One such configuration is intentionally selected in this example

to appreciate the benefit of using a TISO controller.

Consider the acoustic duct configuration in Figure 7. The speaker located upstream simulates a

disturbance

    source

     d(t)

measurement

  microphone y(t)

     error      

microphone

z(t)

u(t)

    control

loudspeaker
   ANC

controller 

0.85m

0.15m

0.15m
0.70m

0.70m

Figure 7: ANC in an acoustic duct.

disturbance source that injects acoustic “noise” into the duct. A measurement microphone detects

the disturbance near the source and the downstream error microphone measures the level of noise

cancellation at a point in the duct where noise attenuation is desired. The objective of the controller

is to minimize the acoustic energy at the error microphone.

We formulate this duct ANC problem using our SITO framework as follows. Let Pzd(s), Pzu(s),

Pyd(s), and Pyu(s) denote the transfer functions from the disturbance speaker to the error micro-

phone, the control speaker to the error microphone, the disturbance speaker to the measurement

microphone, and the control speaker to the measurement microphone, respectively. In an SISO de-

sign scheme, Cy represents the controller that uses information from the measurement microphone

y as input. When a TISO controller is used, the performance output z from the error microphone

is fed back to another controller Cz
3. Using any H∞ software the TISO controller can be syn-

thesized in one step. To be consistent with the analysis in this paper, however, we first perform

one-sensor design and assess closed-loop performance and stability margins from Cy acting alone.

We then design another free parameter q such that the resulting TISO controller C = [Cz Cy]

3In ANC literature, Cy and Cz are usually referred to as feedforward and feedback controllers, respectively.
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yields satisfactory improvement in stability robustness.

We use the same acoustic duct and speaker models as in [7], with the duct length and micro-

phone/speaker locations shown in Figure 7. Six modes are retained. See [8] for more details. The

problem data is casted into a standard H∞ setup described in Section 3. For simplicity the perfor-

mance weightWp in (2) is chosen as constant. Our primary objective is to achieve the best possible

attenuation performance; i.e., to minimize Tzd in (1). For robust stability sake, another weight

Ws = 0.05
¡

1
2π600 + 1

¢2 ¡ 1
20000 + 1

¢−2
is applied to guard against additive uncertainty in Pmu. The

resulting controller Cy yields frequency responses in Figure 8. The top figure depicts disturbance
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Figure 8: Frequency response from one-sensor design.

attenuation performance by comparing the open-loop and closed-loop responses at output z, while

the magnitude of complementary sensitivity Ty is plotted in the bottom figure. These plots are

consistent with those from experimental data given in [6]. They reveal the fact that high peaking

in |Ty(jω)| should occur at some frequency in this particular sensor/actuator configuration [7]. In
this example, the peak is most pronounced at 250 Hz, with ||Ty||∞ = |Ty(j2π250)| = 8.5.

In the SITO structure, from (20) and (21) we see that there is an additional free parameter

q via the feedback controller Cz. Here we employ an approach by designing q directly such that
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||1 − qPzu||∞ ¿ 1.4 With this q and the parameter r computed from Cy, we solve for Cz using

(16). Figure 9 shows the performance comparison at output z. We see some slight improvement

of attenuation level after adding Cz. This can be explained from (19) where the minimization of
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Figure 9: Performance comparison between SISO and TISO controllers.

||1 − qPzu||∞ also helps to reduce ||Tzd||∞. We have found, however, that too much reduction on
||1 − qPzu||∞ not only renders Cz too aggressive but also tends to make Cz unstable. In general

unstable controllers are difficult to implement because of their limited gain-reduction margins and

the inability to perform open-loop tests [14].

Let us now evaluate closed-loop stability margins. Assume as before that all plant perturbations

are described by multiplicative uncertainties, a measure of stability is then related to the size of

complementary sensitivity transfer functions. We should note that for the TISO controller case the

closed-loop system consists of two feedback paths via Cz and Cy, so that suitable transfer functions

to be compared are TO(s), the output complementary sensitivity. Using (15) and (17), and the

algebraic constraint SO +TO = I,TO(s) is found to be

4Since the factor (1−qPzu) appears in the denominator of Cz, too small ||1−qPzu||∞ may cause an excessively-large
actuator effort. This can be prevented by adding a constraint on ||q||∞. See [8] for details.
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SISO case:

TO−SISO =

 0 rPzu

0 rPyu

 (25)

TISO case:

TO−TISO =

 qPzu rPzu(1− qPzu)
qPyu rPyu(1− qPzu)

 (26)

Figure 10 shows the magnitude frequency response comparison of (25) and 26). We observe that

||TO||∞ = |TO22(j2π250)| is reduced from 8.5 to 4 by the TISO controller.
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Figure 10: Comparison of output complementary sensitivity |TO|.

Remark 2: It is interesting to note a slight increase in |TO21| with the TISO controller. This
gives another reason why a good design may require an additional constraint on ||q||∞ [8].

7 Conclusions

This paper developed an in-depth analysis of disturbance attenuation problem on a SITO plant.

Our analysis suggests that using both measurement and performance outputs can improve trade-

off between achievable performance and stability robustness to model uncertainty. We used an

ANC problem example to show the benefits of adding feedback from output z compared to the
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original SISO design. In practice, if both performance and stability objectives are stated as H∞

minimization problems, it may be more convenient to synthesize Cz and Cy simultaneously. We

have found in the simulations of this ANC example that the two methods yield comparable re-

sults. Nevertheless, in some situations the two-step design may be useful. For example, a specific

weighting function can be constructed and used to shape the free parameter q for better closed-loop

stability robustness. It is also under our investigation whether this synthesis scheme is useful in

multiobjective control problems; i.e., an H2/H∞ design procedure may be decoupled to minimizing

||Wp(Pzd − PzurPyd)||2 and ||Ws(1− qPzu)||∞ separately.

Finally, since our analysis is based on coprime factorization theories from [11] that were primarily

developed for MIMO systems, we believe that with some effort our concept could be extended to

MIMO problems. Another possible future research is to apply the analysis in Section 4 to unstable

plants.
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