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8. One-Degree-of-Freedom Design

In Chapter 7 we completed a QFT design to achieve robust 
stability with specific robust stability margins. Let us now expand 
this design procedure to a more general single-loop feedback 
setting. 

We begin by considering various 1 DOF problems for the generic 
block diagram shown below (assume F = 1).
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A typical constraint in many 
applications is in terms of the 
control effort U when limited 
actuation power calls for a spec 
in the form |u(t)|≤ umax.  The 
step response looks fne and 
“harmless”, but real applications 
must consider power 
requirement.

This time-domain constraint 
cannot be easily converted into 
a frequency-domain spec 
without some design 
conservatism.  At any rate, a 
frequency-domain spec on the 
control effort due to reference 
commands has this form (H = F = 
1):
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How do we construct a reasonable weight Wu(w)?  Here’s one 
approach.  Let us consider once again the example in Chapter 7 
with the “better” design.  The control effort for a reference 
step command is shown below for the nominal plant and “best”
design from last chapter ch7_highorder_red.shp 
(ch8_u.mdl).

0 0.005 0.01 0.015 0.02 0.025
-500

0

500

1000

1500

2000

2500

3000

3500

sec

u(
t)



2/21/2005 8-4 Copyright ©2005 (Yossi Chait)

8.1. Control Effort Minimization

Let us first evaluate the control effort dynamics in the 
frequency response.  We use ch8_a_u.m which consists of the 
following key command:

chksiso(4,w,1,P,[],C);

Another way to compute the above is:
tu = feedback(C,P); % or C/(1+C*P);
tufr = squeeze(freqresp(tu,w));
mtufr = abs(tufr);
z = max(mtufr,[],2);
semilogx(w,20*log10(z));
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The max amplitude at each frequency is shown below.
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Reducing the DC gain is one way to cut down this huge peaking.  
But it also affects the whole frequency response.  So we would 
like to avoid this drastic solution.

Inverse Laplace transform requires the whole frequency response 
to compute the time response

however, as a rule, we should limit large peaking in |U/R|.
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In our example, say we attempt to cap peaking to below 1000 (60 
dB), and try to maintain the same response elsewhere.  In 
modern control, we would construct a weight, such as Wu(w), 
such that:
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Rather then focusing on the entire frequency range, we 
concentrate on the range of interest ω ∈ [50,2000] and try to 
maintain similar C(jω) elsewhere, especially in the lower end.  
Appropriate QFT bounds are computed using the function 
sisobnds.m in the same manner done for the margin-type problem 
earlier :

LTI/FRD array or complex 

bdb = sisobnds(ptype,w,Ws,P,R,nom,...)

a matrix with values of 
bound on nominal loop, 
in dB, at -5° spacing 
from 0° to -360°
(default ).  note: ASCII 
but in a special toolbox 
format.

specify the 
input/output 
problem(4 here)

freq resp matrix 

freq vector

performance weight or 
spec

nominal plant 
index

multiplicative 
uncertainty 
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Various input/output problem types are shown below.
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The QFT bounds are computed in ch8_b.m (over a smaller freq 
band):

wbd1 = [.1,1,100]; 
W1 = 1.2;  % margin weight
bdb1 = sisobnds(1,wbd1,W1,P);

wbd4 = [200,300,500]; 
W4 = 1000; % control effort weight
bdb4 = sisobnds(4,wbd4,W4,P);

bdb = grpbnds(bdb1,bdb4);
plotbnds(bdb)
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The result is shown below.
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Note that a control effort constraint amounts to limiting the 
controller bandwidth.  Specifically, at some point above crossover 
frequency (|L|=0 dB) the loop gain tend to decrease rapidly so

The bounds shown exhibit this relation (except that they are 
computed for L0=CP0 and not C).  In this class of bandwidth-
limiting problems, you should expect the bounds to lie below 0 dB 
and be plotted using dashed lines indicating that the loop must lie 
on or below them. 

If the weight is sufficiently relaxed, then the only constraint 
would be that  L0 does not come near –1, i.e., |1+ L0|>>0  to 
avoid peaking in closed-loop transfer functions.  This is a margin-
type problem and you will see the “expanded” M-circle bounds as 
seen in the gain/phase margin problem.

Also note that at the high-frequency range even with similar 
templates (e.g., vertical lines) and similar spec (60 dB), the 
corresponding bounds on L0 are NOT similar (lack of symmetry).
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Proceeding directly to loop shaping (ch8_lp.m), and retrieving 
the controller design for the margins spec (File|Open, then 
select ch7_highorder_red.shp) results in:

Can we reduce the loop gain in the range just above ω >100 
without affecting the low and mid-freq dynamics?

low-freq gain is 
fixed by spec

can we pull it down?
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Probably not, unless we are willing to tradeoff bandwidth (and 
possibly steady-state gain).  Loop gain reduction must be 
accompanied with commensurate phase lag. Adding low-pass 
dynamics in that range illustrates this inevitable tradeoff 
(ch8_newdesign.shp).
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It is instructive to compare the closed-loop frequency responses 
of both the control efforts and tracking relations as shown 
below.
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The nominal reference step responses below show that reduction 
in the control effort peak has been achieved by satisfying the 
bounds without steady-state change, of course, at the cost of 
increased overshoot (smaller margins) and somewhat slower 
transients (lower BW).
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8.2. Sensitivity Reduction

Another common specification involve the sensitivity function.  
For example, in a CD-ROM the laser beam points on the spinning 
disk.  Reading encoded information reliably can occur only if 
most of this spot lies on top of the desired track.  This constraint 
on the error signal  E leads to a sensitivity reduction problem of 
the form:

Rejection of disturbance entering the loop at the plant output, 
e.g., DC offsets, also gives rise to a sensitivity reduction form (if 
H = 1):
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In a sensitivity reduction problem we distinguish between a Ws<1 
case and a margin (or peaking constraint) weight where Ws>1.  
The former weight requires high loop gains since to achieve 

we need

The later weight only constrains the loop around the critical 
point so to avoid peaking, but places no strict high gain or 
bandwidth constraint on the loop since C = 0  readily solves the 
problem.

Let us illustrate this point using a simple example.
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Example. Consider an integrator plant with gain uncertainty

It is required that the sensitivity function be less then ω/5 at low 
frequencies and never exceed 1.4.  The weight has this form

The steps in a QFT design process should be automatic by now:  
study plant uncertainty via templates, compute bounds at several
frequencies in the range of interest, then loop shaping.   The 
details of such design can be found in ch8_example.m.  A 3rd 
order controller (ch8_example.shp) resulted in the following 
design.
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Note: the bound at ω = 4 requires loop gains near 0 dB.  With 
|L|<< 0 dB, T → L and , S → 1, so there’s little benefit from 
feedback and there’s no need to maintain the high loop gain 
beyond the ω = 4 range.  However, we must avoid peaking which 
is why margin bounds are the only type used at high frequencies.
More on that later.
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Evaluating the closed-loop response (ch8_a_ex.m) shows that, 
as expected, since the loop lies right on its bound at the low 
frequencies, monotonicity of both the plant and the spec 
guaranteed satisfaction of the weight at even lower (or higher) 
frequencies.  

1
1 ( )

max
P

PC j+ ω∈P
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Theorem: Assume L(s) has at least a 2-pole roll-off and N
unstable poles. Then,

We observe above that at the low-freq range, where |S| << 1 
(“benefits of feedback”), the integral is negative.  So for an 
open-loop stable system, we must have |S| > 1 at some 
frequency band. Since peaking in closed-loop response is not 
desired, can we push the peaking in |S| to very high frequencies 
where it would have far less effect?

Bode, 1945, Freudenberg and Looze, 1985.
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Freudenberg and Looze, 1985, also show that if

then

Hence |S|>1 must occur at ω < ωc if ε is very small. This is 
clearly seen in our example.
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8.3. Notes 

In the previous example we have glanced over a crucial aspect of
feedback, namely the effect of high-frequency uncertainty on the 
“cost of feedback”.  For this purpose, consider the same plant 
with 10 times gain uncertainty

Taking the same performance spec, we know that the “low”
frequency bounds remain unchanged since the lowest plant gain 
is the one dictating the required minimal loop gain.  Both plants 
have same lowest gain of  k = 1.  A QFT procedure results in the 
following design (ch8_example_b.m, ch8_example_b.shp) .
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Both loops have similar dynamics until about ω = 8.  However, the 
increased gain uncertainty prevents the new loop from “turning”
the corner at ω = 15.  The margin bound (or high-frequency 
bound) is 20 dB longer at the bottom forcing the new loop to 
maintain phase of no worse than –135° (the right edge of the 
margin bound).  
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The end result is that larger gain uncertainty forces higher 
control bandwidth.  Yet this additional bandwidth is wasted since 
it occurs at a frequency band where |L|< -20 dB.  Moreover, this 
larger bandwidth implies increases sensitivity to un-modeled 
dynamics in that range.

It is possible to estimate the “cost” of this larger gain uncertainty 
(i.e., larger margin bounds) in terms of loop bandwidth.  From 
the well-known Bode’s gain-phase relation we know that given a 
stable and mp loop with  L(0) > 0, its average slope in dB/decade 
over some frequency band can be determined from its average 
phase in that band:
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So increased phase lag allows faster gain reduction of  L (e.g., a 
2nd-order pole vs. a 1st-order pole). Also, a similar relation holds 
for loops not satisfying the assumptions but with worse phase 
lag.  Due to our margin bound, the loop can have at most –135°
in this frequency range, implying a slope of 
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In our example, the top right-hand corner of the bound is at 
about 0 dB and both loops are there at approximately ω = 4.  The 
original loop can turn the corner at about –20 dB.  It will need a 
bit over 2 octaves to drop from 0 to –20 dB at this constrained 
slope of –9 dB/oct: from 4 to about 16 rad/sec.  Indeed this is 
seen in the actual loop response.  On the other hand, the new 
loop will need about a decade plus one octave to accomplish the 
same thing: from 4 to about 80 rad/sec, a value confirmed by the
actual loop dynamics.
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The mag plots of the two nominal loops illustrate this point.  

Nominal Loops
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The loop is required to maintain its gain over a larger frequency 
range without any input/output tracking benefits is clearly seen
from the mag of the corresponding (nominal) complimentary 
sensitivity functions and step responses.

Step Response

Time (sec)

A
m

pl
itu

de

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

k in [1,3]
k in [1,30]

Nominal Complimentray Sensitivities

Frequency (rad/sec)

P
ha

se
 (d

eg
)

M
ag

ni
tu

de
 (d

B
)

100 101 102 103 104
-540

-360

-180

0
-200

-150

-100

-50

0

50

k in [1,3]
k in [1,30]



2/21/2005 8-32 Copyright ©2005 (Yossi Chait)

8.4. Homework

1.Explain why bounds on L0 for similar specs and similar 
templates are also similar for sensitivity and complimentary 
sensitivity problems (assume H = 1).  And why this is false for a 
control effort specification.

2.Consider an uncertain plant with gain uncertainty

( ) : [1,5] .
( 1)

k
P s k

s s
⎧ ⎫= = ∈⎨ ⎬+⎩ ⎭

P

Design a controller C(s) that (i) robustly stabilizes the system, (ii) 
achieves |S| ≤ [0.05,0.2,0.8]   at ω = [1,2,4] rad/sec.,(iii) 
satisfies robust margins of the form |S| ≤ 3.5 dB at all ω, and   
(iv) minimizes the high-frequency loop gain.

Next, consider the same specs and a similar plant with smaller 
gain uncertainty

( ) : [1,2] .
( 1)

k
P s k

s s
⎧ ⎫= = ∈⎨ ⎬+⎩ ⎭

P
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Design a new controller to take advantage of the reduced 
uncertainty. Compare the frequency responses of the two 
controllers and sensitivity and complimentary sensitivity 
functions.  Considering reference step responses, is anything 
gained by having a larger bandwidth controller? Are there any 
disadvantages (hint: sensor noise and robustness to high-
frequency un-modeled dynamics)?  Illustrate these via 
simulations.

3.Compute the sensitivity and complimentary sensitivity function 
for a single plant in the example above (k∈ [1,5]  plant).  Can 
you prove why one has peaking in a lower frequency then the 
other.  Try to generalize your answer for arbitrary stable 
systems (hint: plot generic margin bounds for S and T for same 
weight).
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