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7. Completing a  Design: Loop Shaping

Now that we understand how to analyze stability using Nichols 
plots, recall the design problem from Chapter 5: consider the 
following feedback system

U YC∑ PR
−

where

( ) : [1,10], [1,10] .
( )

k
P s k a

s s a
⎧ ⎫= = ∈ ∈⎨ ⎬+⎩ ⎭

P

The objective is to design a controller C such that it achieves

• Robust stability margins of PM ≥ 50° and GM ≥ 1.83.

• C(0)=100.
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We saw that a constraint on the peaking in the complimentary 
sensitivity function T (or in S) is a more reasonable way to deal 
with stability margins.  In this example we obtained:

( )
.

1 ( )
( ) 1.2, 0,L j

L j
T j Pω

+ ω
ω = ≤ ω ≥ ∀ ∈P

We are now ready to attempt a design of a stabilizing controller
which also meets the above specifications.
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1.Run ch5_t.m and enter a few  frequencies for template 
generation.  As a reminder, the shape of templates is often 
asymptotic with frequency.  So choose one low frequency, one 
high frequency and a few mid-frequency points to capture 
shape variations (use different ones from mine!).
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2.Run ch5_b.m to compute the robust margin bounds. You will 
need to enter your nominal plant index (I used a 40-point grid 
and case 1 for nominal plant).  
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7.1. Loop Shaping

Loop shaping is a procedure where you add and modify the 
controller elements until the nominal loop is stable and satisfies 
its bounds.

3.Run ch7_lp.m which executes the following commands:

wl = logspace(-2,3,100); 
lpshape(wl,bdb1,P(1,1,nompt));



2/17/2005 7-6 Copyright ©2005 (Yossi Chait)

-360 -315 -270 -225 -180 -135 -90 -45 0
-120

-100

-80

-60

-40

-20

0

20

40

Open-Loop Phase (deg)

O
pe

n-
Lo

op
 G

ai
n 

(d
B

)

0.1
1
100

You will see something like this (depending on your choice of 
nominal point and frequencies for computing bounds).  We did 
not pass an initial controller, so at present C = 1.

Stability analysis:
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What do we know?
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7.1.1 Loop Shaping Elements
The Toolbox supports the following continuous-time elements for 
nominal loop design (“shaping”):

Element Form
Real pole

Real zero

Complex pole

Complex zero

Super 2nd (2/2)

Integrator (n>0) or 
Differentiator (n<0)
Lead or Lag

Notch
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The steady-state spec requires that  C(0)=100.   From Select 
Elements to Tune menu, highlight Gain entry (value of 1 at this 
point), enter inside the k box the desired value, 100 in this 
example, then <CR>, then Apply .  To optimize axis values, from 
the pull down menus do View|Full. 
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The nominal loop response does not exhibit any crossings 
indicating nominal closed-loop stability (stability can also be 
checked analytically from Tools|Stability). Since all bounds are 
satisfied, let us evaluate our design with respect to plant gridding 
and frequency discretization.

Before proceeding to analysis, you should pass your present 
design to the workspace via File|Export and the notation C (note 
the other I/O options). Check the workspace for this C.
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7.2. Analysis

4.Run ch7_a.m which executes the following commands:

chksiso(1,wl,W1,P,[],C);
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You will see something like this.
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Clearly, this design does not meet the margin spec in the range 
[4,40] rad/sec.  Why?  Returning to the LPSHAPE window, we 
observe a violating of the high-freq (i.e., 100 r/d) bound in the 
range [1,40].  We could go back and add some lead in this freq 
range assuming this bound to be effective for ω > 4.  This night 
work at times, but let’s look at a more comprehensive approach.

In general, missing a weight is a result of two possible reasons:

• Template discretization and /or

• Frequency discretization (too few bounds).
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So let us add a few more bounds in that range, say 
[.1,1,4,10,40,100].  Run ch5_t.m, followed by  ch5_b.m. This is 
what you should see.
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Now start again loop shaping using ch7.lp.m.  Tune the gain to 
100 as before.  Now you can clearly observe the bound violation 
at w=[4,10,40] which resulted in missing the margin spec.  

Note that the right-hand side of the bounds for ω>1 is fixed. 
Hence, in this example, we didn’t need to compute the additional 
bounds.  What we needed was a shift of the nominal loop to the 
right of the high-frequency bound (lead).
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7.3. Final Design Steps

You can shift the loop to the right interactively or by entering
numerical values for specific elements.  Adding phase can be 
accomplished using several elements: real zero, lead, complex 
zero and 2/2.  Adding a new element is done by horizontally 
dragging the loop to the left (1st or 2nd order pole, lag and 2/2) or 
right (1st or 2nd order zero, lead and 2/2).  The program will 
match the desired phase change (but not the mag change, except 
for 2/2) and implement ONLY stable elements.  Also, the 
maximum change is limited, e.g., a real zero/pole element can 
achieve < ±90° phase change.  Once you add an element you can 
see its numerical value interactively displayed to the right.

Let’s try it. For example, select a Lead/Lag element, then point the
cursor on the loop at ω = 40. You should notice the cursor type 
changing when you are on “top” of the loop. Now drag the loop to 
the right until it clears the bound as shown below.
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Observations:

•The dashed 
response is the 
new one.  Clicking 
Apply will formally 
replace the 
previous design 
with this new one.

•The loop at w = 40 has been shifted to the right due to the lead
element.  The list on the right shows a new  Lead/Lag element 
[57.93,40] [z=11.5, p=139.2].  This means a lead element with 
max phase increase of 57.93° at 40 rad/sec achieved with a zero 
at 11.5 and a pole at 139.2 (see notation on page 7-8).
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•We’re still violating the bounds in the range [1,10].

Select Apply and further shift the response to avoid the bounds 
using a Lead/lag element drag again the loop at a point, say half 
way in the range ω = [1,40]. After Apply I got this.
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( )
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One additional Lead 
element in a higher 
frequency range is 
what we need as 
shown below  One 
additional lead does 
the trick.  Also,  
you can highlight 
any specific 
element already in 
your design, then 
fine tune it using 
the small sliders 
next to each of its 
parameters.

This 3rd-order controller appear to do the job, but we need some 
analysis.  
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Before we proceed to evaluate the design, you need to become 
convinced that the choice of nominal plant is not important. Save 
the controller in a QFT Toolbox style File|Save.  Run ch5_b.m
again but enter a different nominal plant index.  Originally I used 
1 and now 33.  Note that the bounds have same shape but 
different orientation.
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Now run again the loop shaping function ch7_lp.m and retrieve 
our design File|Open. 

Toggle on/off the various bounds to convince yourself that indeed 
the bounds are satisfied.  For example
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Conclusion: if the nominal loop satisfies its bounds, the same 
controller will do the job with any other nominal plant (with 
appropriately computed bounds).
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Back to analysis. Run ch7_a.m once more.  Make sure the
controller is sent to the workspace as C using File|Export

As expected, this design satisfied the robust margin spec. In fact, we 
have an over-design: the nominal loop is away from its bounds.
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What about errors due to plant gridding? Let’s take a closer look. 
Set ipt=1000 in ch5_t.m to define an LTI array with 4000 plants 
(compared with the initial 40). 

You can re-compute the bounds, then check if they are visibly 
different from the previous set (they are not). Or simply evaluate 
closed-loop response by running ch7_a.m.
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Step reference responses of the closed-loop system reveal that 
we have both over- and under-damped dynamics.
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You think you are done?  Maybe so if this was a homework 
problem.  As it turns out, there are many (actually infinite) 
controllers that solve this problem.  Let us try to learn what 
make one design better than another with respect to a specific 
figure of merit.
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7.4. Sensor Noise Problem

Many feedback systems are sensitive to high-frequency sensor 
noise and un-modeled dynamics. Consider the block diagram is 
shown below which includes sensor noise

U YC∑ PR
−

∑
N

We are particularly interested in the effect of sensor noise at the 
plant input, U, since plant inputs are always limited.  We have 
this relation

However, at the same freq range
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To compute closed-loop responses, execute the following 
commands.  To compute tracking responses

Try=feedback(C*P,tf(1,1)); 
% this is less efficient: Try = P*C/(1+P*C);
w = logspace(-1,5);
Tryfr = squeeze(freqresp(Try,w));

Note:
>> size(Try)
40x1 array of zero-pole-gain models
Each model has 1 output and 1 input.

>> size(freqresp(Try, w))
ans =

1     1    50    40

>> size(Tryfr)
ans =

50    40
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To compute noise effect at plant input u

10-1 100 101 102 103 104 105
-150

-100

-50

0

50

100

rad/sec

dB

Tnu = -feedback(C,P);

Tnufr = squeeze(freqresp(Tnu,w));

semilogx(w1,20*log10(abs(Tryfr)));

hold on

semilogx(w1,20*log10(abs(Tnufr)));

R
Y

N
U

So what?  Let us see next.
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Recall that our controller was proper.  Let us modify it such that 
while all the specs remain satisfied, we force |C(jω)| to 
approach zero at high frequencies.  One way to do that is to add
a complex pole with .55 damping and 2500 rad/sec natural 
frequency.
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Now compare both controllers (ch7_C6.shp and ch7_C8.shp).   
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Consider the step 
response of this system 
with a 2 mV sinusoidal 
noise at 10000 rad/sec 
(ch7_noise.mdl).

As expected, both designs 
have similar bandwidths 
which indicate similar 
transients.  Indeed, this is 
seen from the 
indistinguishable step 
responses.

U

R 1

s  +s2

plantStep

Signal
Generator

Scope1

Scope

C

LTI System
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However, the 2 mV high-frequency noise is very noticeable at the 
plant input when the proper design is used.  Most often, this is
not a good design – we should always consider high-frequency 
sensor noise and un-modeled dynamics (e.g., resonances).  And 
saturation at the plant input can further exasperate the 
situation.
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If this was a motor driving a robot arm or an arm holding the lens 
in a DVD drive, we would see nothing at the plant output (robot 
arm’s tip or lens), while the motor will be humming like crazy, 
possibly overheating and generating audible noise.

Note: with |L|<0 dB, T→ L and , S→ 1, so there’s little benefit 
from feedback and there’s no need to maintain the high loop gain 
beyond the ω = 4 range.  This important observation is the topic 
of a homework problem in the next chapter.
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7.5. Reducing the High-Frequency Loop Gain

In QFT, the optimal controller is one that solves the following 
optimization problem

where the controller’s high-frequency gain kc is defined by

subject to
0min

0L
kc >

stabilizes the system and 
satisfies its bounds
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Roughly speaking, this optimal 
loop will lie right on its bounds 
at each frequency (we have 
infinite number of these).  A 
practical design will attempt 
to lie on the few bounds we 
are working with and then 
“hug” the high-frequency 
margin bounds until the 
frequency where loop phase 
has no effect on stability.  
From that  frequency and 
higher, we can drop the loop’s 
gain arbitrarily fast (subject to 
maintaining the “hugging”
thing).  This is done below by 
adding and tuning elements.   
The result is shown below 
(ch7_highorder.shp)
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However, we now have a 16th order design. Fortunately, a very 
efficient order reduction algorithm is available within the loop
shaping environment: highlight the controller elements for 
reduction (here all of them; in general, you can reduce only 
stable and proper controller).  Then click on the Reduction
button.  It will open a new window titled Hankel Singular Values.  
The plot displays the relative contribution of the poles with 
respect to the the response (note: near perfect pole/zero 
cancellations are automatically detected and removed).

You can quickly test the feasibility of lower orders by entering a 
number, say 7, then hit Reduce.  The program will compute the 
resulting 7th order controller and plot the reduced-order loop 
response (indicated by a dashed line) on top of the full-order 
version.  In this case, there’s a very good agreement in term of 
the frequency response where it counts, that is, relative to the
bounds.  If this ok, hit Done (see ch7_highorder_red.shp). 
For more information and available options on order reduction 
read the manual.
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A comparison of the three controllers is shown below.
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I.H.: “This is almost always the situation in a 
competent feedback design:  tradeoff between 
bandwidth and complexity.”
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7.6. Cost of Feedback

Horowitz defines the cost of feedback as the excessive loop gain 
beyond the useful system bandwidth.  This is nicely illustrated 
below using our nominal plant and “best” controller.
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7.7. Homework

Consider the following feedback system

U YC∑ PR
−

{ }( )( )
( ) : [1,7], [.2,3], [9,44] .k

s a s b
P s k a b

+ +
= = ∈ ∈ ∈P

Design a controller C such that it achieves:
• Robust stability margins of PM = 50° and GM = 2.2.

• C(0)=250.

• Zero steady-state errors for step references R.

• “Minimal” bandwidth design.
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