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5.4. Additional Properties of Bounds and 
Templates

Clearly, P(ω) is a nonlinear function of frequency.  However, we 
can exploit its asymptotic behavior:

So
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Now use ch5_t.m to re-compute the template at 0.1  and 100 
rad/sec.
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That is, the shape of these templates approaches a vertical line
since the underlying uncertain plant exhibits only magnitude 
uncertainty.

Margin bounds (i.e., |T| ≤ α|)  for such “skinny” templates 
resemble a vertically stretched  M-circle.  To see this, run 
ch5_b.m/ch5_t.m (nom is 21) A more detailed interpretation is 
shown in the next page.



2/15/2005 5-4 Copyright ©2005 (Yossi Chait)

-360 -315 -270 -225 -180 -135 -90 -45 0

-30

-20

-10

0

10

20

30

40

Open-Loop Phase (deg)

O
pe

n-
Lo

op
 G

ai
n 

(d
B

)
Robust Margins Bounds

 6 dB
 3 dB

 1 dB

 0.5 dB
 0.25 dB

 0 dB

 -1 dB

 -3 dB

 -6 dB

 -12 dB

 -20 dB

0.1
100



2/15/2005 5-5 Copyright ©2005 (Yossi Chait)

We conclude that:
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What is the effect of the accuracy of the template’s boundary on 
the accuracy of the resulting bound?  This is not a critical 
“problem” when computed manually (why?), but can be an issue 
with algorithms that only use discrete template points.

To see this, run ch5_t.m but modify the grid for each edge.  Use 
3 points instead of 10.  Both templates are shown in the next page 
at ω = 2.
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Both bounds are shown below at ω = 2 for the nominal plant 
(a0,k0)=(1,1).
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What classes of uncertain plants result in phase uncertainty at low 
and high frequencies?

What about “typical”templates at “mid”-range frequencies?
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5.5. Theoretical Formulation of Bounds
We are given a plant family P ∈ P and a closed disk T centered 
at the origin with radius α.  We are asked to find a fixed 
controller C(s) such that the complimentary sensitivity function T

1
C P

T
C P

=
+

satisfies

( ) , f o r  a l l .T j Pω ∈ ∈T P

Consider the bilinear mapping  f : z → w (i.e., CP → T )

and its inverse  g: w → z (T → CP )
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Then

and our spec becomes: find C such that

If 0 ∉P , we can re-write the above as

or
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Now introduce a nominal plant  P0 ≠ 0 (for stability/analytic 
considerations)

Generally speaking, such bounds are not convex and may even be 
non-connected.

In QFT, we compute such bounds at a discrete set of frequencies 
and display only their boundaries (implicitly assuming they are 
simply connected).

To solve the problem, design a nominal loop L0=CP0 satisfying the 
above QFT bounds and robustly stabilizes the plant.



2/15/2005 5-13 Copyright ©2005 (Yossi Chait)

5.6. Numerical Algorithms

Consider the spec on the complimentary sensitivity function T

{ }1 2( ) ( ) ( ), , , , .
1 n

CP
T j j P P P P

CP
ω = ω ≤ α ω ∀ ∈

+
…

Note that we already assume that the plant set has been 
discretized in some way.

Let
   and    j jC ce P peφ θ= =

and plug into the inequality above

Evaluate magnitude, then square both sides
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Invert and re-arrange to form a quadratic inequality

In fact, any of the performance specs (ptype) leads to a standard 
quadratic inequality of the form:

2(p, , , ) 2 (p, , , ) d(p, , , ) 0.a c b cφ θ α + φ θ α + φ θ α ≥
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Graphically speaking, solution to the above can take on the 
following forms (assuming fixed controller phase φ):

0d2)( 2 ≥++= bcaccf

0
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The three basic bounds are shown below.

0dB

-360° 0°-180°

0dB

-360° -180° 0°

0dB

-360° -180° 0°
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A brute force algorithm (used in QFT toolbox) involves the 
following

•Fix the frequency

•Discretize controller phase φ∈(-360°,0°] (toolbox default is 5°).

•Compute Ci for each plant Pi in the discrete set (done at each 
phase in the above range).

•Compute the intersection of all the individual bounds C = ∩Ci
(done at each phase in the above range).

•The bound on the nominal loop is simply P0C  where P0 is any 
plant from the discretized set. 
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These algorithms are applicable to single-loop and multi-loop 
systems. More details can be found in

• Chait, Y., and Yaniv, O., “Multi-input/single-output computer-aided 
control design using the Quantitative Feedback Theory,” Int. J. Robust 
and Nonlinear Control, Vol. 3, pg. 47-54, 1993.

• Chait, Y., Borghesani, C., and Zheng, Y., “Single-loop QFT design for 
robust performance in the presence of non-parametric uncertainties,”
J. Dynamic Systems, Measurement, and Control, Vol. 117, pp. 420-425, 
1995.
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5.7. HOMEWORK

1.  Relate the spec on the sensitivity function

1
1

S
L

=
+

to lower gain and phase margins.

2.  Relate the spec on the complimentary sensitivity function to
the upper gain and phase margins.
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