
4/28/2005 15-1 Copyright ©2005 (Yossi Chait)

15. Multivariable QFT Design (Part 2)
15.1. Reducing Conservatism. Recall that in the input disturbance 
rejection problem of Ch. 12, with the exception of the last step, the 
design algorithms leads to conservatism.  This was a result of over-
bounding closed-loop interactions from the loops yet to be 
designed.  We now consider two ways to minimize this over-design. 

Low Frequency Performance Bounds. Assuming “large” control 
gains at low frequencies (below crossover), we approximate the 
input-output relations by

which leads to simple performance inequalities of the form

( ) ( )  and i iy j P dω ≤ α ω ∀ ∈ ∈P d
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The above direct form is quite different from the performance 
inequality developed in Ch. 14 for the first loop

1 12 2 1 2 12

11 1 11 1
1 1( ) ( ),  and .d y d

c cy j P d+ π +α π
π + π +ω ≤ ≤ ≤ α ω ∀ ∈ ∈P d

The exact amount of achieved over-design reduction varies from 
one problem to another.  However, the computational complexity 
of the associated QFT bound is reduced.  Also, the above 
approximation is effective only at the low frequency range where
we have large loop gains.  At the mid frequency range, margin 
bounds should dominate loop shaping constraints.
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Tuning. Recall the design in the Chap. 14.  Closed-loop 
performance of the 1st loop (i.e., |y1|) exhibits the expected over-
design.  When C is completely known, is it possible to tune c1 such 
that over-design is reduced without adversely affecting margins and 
performance of the MIMO system?  It turns out that by exploiting
multivariable directionality, this is often feasible.  In fact, we now 
show that each relation from the j’th input dj to the i’th output yi

in terms of ck has a bi-linear form.

Before we proceed, we need the following relation (see Yaniv, 
1999): 1 1
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Using this relation
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That is, using Ak = [aij] and Bk = [bij], we have
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Our plant input disturbance rejection problem has this form
1( )y I PC Pd−= +

For example, in our 2x2 example, to tune c1, we need two 
performance inequalities since it affects the performance of both y1

and y2.  Specifically, 

1

2

0
or

0
d

d
d

⎡ ⎤ ⎡ ⎤
= ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

we end up with a set of 4 robust performance inequalities, 2 for
each output:
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1 1( ) ( ),  and y j P dω ≤ α ω ∀ ∈ ∈P d

2 2( ) ( ),  and .y j P dω ≤ α ω ∀ ∈ ∈P d

To compute bounds, we need to work with the nominal plant in 
the 1st loop.  Since the 2nd loop is closed, we have

Per our stability criterion, robust stability of the MIMO system is 
achieved iff c1 robustly stabilizes 1/π211.

The four sets of disturbance rejection bounds are shown next
(ch15_ex1_tune.m).



4/28/2005 15-7 Copyright ©2005 (Yossi Chait)

-360 -315 -270 -225 -180 -135 -90 -45 0

-5

0

5

10

15

20

25

Open-Loop Phase (deg)

O
pe

n-
Lo

op
 G

ai
n 

(d
B

)

1
2
3

-360 -315 -270 -225 -180 -135 -90 -45 0

-40

-30

-20

-10

0

10

Open-Loop Phase (deg)

O
pe

n-
Lo

op
 G

ai
n 

(d
B

)

1
2
3

-360 -315 -270 -225 -180 -135 -90 -45 0

-40

-30

-20

-10

0

10

Open-Loop Phase (deg)

O
pe

n-
Lo

op
 G

ai
n 

(d
B

)

1
2
3

-360 -315 -270 -225 -180 -135 -90 -45 0
-30

-20

-10

0

10

20

30

Open-Loop Phase (deg)

O
pe

n-
Lo

op
 G

ai
n 

(d
B

)

1
2
3

1 1d y→ 2 1d y→

2 2d y→1 2d y→



4/28/2005 15-8 Copyright ©2005 (Yossi Chait)

-360 -315 -270 -225 -180 -135 -90 -45 0

-5

0

5

10

15

20

25

30

Open-Loop Phase (deg)

O
pe

n-
Lo

op
 G

ai
n 

(d
B

)

1
2
3

The intersection of these bounds is quite interesting.
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In addition, we have two margin bounds, one in each loop.  Since
there’s only one unknown, the constraints

P+ π ≥ ∀ ∈ ω ≥2
1 111 / 0.6, , 0c P

2
2 221 / 0.6, , 0c P+ π ≥ ∀ ∈ ω ≥P

are bilinear in terms of c1.  For example
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However, it turns out that

1
2
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And earlier we have shown that
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1
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which means that we need not compute the above relations 
manually prior to computing bounds (see M-file).
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Finally, the advantage of tuning is shown below.

We know c1 has too large a gain; the trick is to reduce it w/o 
messing mimo performance!
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The over-design is now removed as shown below in the closed-loop 
simulations. 
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As expected, the margin problem is resolved as well (why?).
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Comparison of the siso loop 1 controllers is shown below.  Which 
one is the tuned version?
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15.2. Direct and Inverse-Based Design
Stability is established using Nyquist criterion where we count 
encirclements of det(I+PC).  Using inversion 

( ) ( ) ( )1det det detI PC P P C−+ = +

and if P is stable, then from Ch. 13

( ) ( ) Nyquist plot of det ( ) Nyquist plot of ( )i i
i

P s u s u P s s= λ ⇒ = λ∏
implying that the Nyquist plot of det(P) does not contribute any 
encirclements.  So let’s focus on det(I+PC)

21
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( ) ( )22 11 12 21 22 1 22 1
11 1 2 11 1 2

11 1 11 1

det
.

c c
c c c c

c c
π π − π π + π π + π⎛ ⎞ ⎛ ⎞= π + + = π + +⎜ ⎟ ⎜ ⎟π + π +⎝ ⎠ ⎝ ⎠

We observe that even if we c1 does not stabilize p11 at the first 
design step, 

and if the term on the right is stable, so is the product.  Hence, if 
c2 stabilizes the plant at the 2nd step, the MIMO system is stable.  
Nevertheless, unstable 1st loop adds a burden on c2.

While not shown here, the same can be said on nxn MIMO systems. 
If c2 stabilizes the plant at the nth (last) step, the MIMO closed-loop 
system is stable even if earlier loops are not stable.  Implicit here 
are the assumptions of no unstable pole-zero cancellations and no 
unstable decentralized hidden modes.
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The direct scheme (DS) was developed1 to avoid the need for plant 
inversion.  It is shown there that a similar sequential design 
procedure is feasible.  In certain situation where the plant is 
unstable with nmp zeros (or delay), the inversion-based scheme (IS) 
is not desired.
Design for performance in either scheme is similar and not studied 
here.  However, there are interesting connections between the two 
in terms of stability.  This is studied next.

Again, closed-loop stability is established from the Nyquist plot of 
det(I+PC).  Using the sequential procedure we have

11 12 1 11 1 12 2

1 21 22 2 21 1 22 2

1 0 0 1
0 1 0 1

p p c p c p c
I PC

p p c p c p c
+⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

+ = + =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥+⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

LU decomposition (i.e., Gauss elimination) gives

1Park, M.S., A new approach for multivariable QFT, PhD Thesis, Mech. Eng. Dept, 
UMass, Feb. 1994.
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11 1 12 211 1 12 2
21 1 2
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where

The direct scheme requires stabilization of the plant        In the 
inversion-based scheme, the (effective plant to be stabilized is

2
22.p
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− − π π⎡ ⎤ ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥− π π⎣ ⎦ ⎣ ⎦ ⎣ ⎦

and ( )1 1
detdet PP− =



4/28/2005 15-19 Copyright ©2005 (Yossi Chait)

so

( )
22

1
1 2211 12 2

22 22
111 22 11 1

1

detdet1/ !1det 1
det det

p
c P c pc P ppc p cc

P P

+ +π +
π = = = =

π +π+ +

The effective plants at the last design step are equivalent.  Note 
that different c1 controllers will be designed since plants and 
performance bounds are different at the 1st step in direct and 
inverse-based schemes.

General comments. Let the MTF in Pu = y be defined using 2 
polynomial matrices  Eu=Dy, 

( )1 adj
detD

D E
P D E−= =

and 

( )1 1 adj
.

detE
E D

P E D− −= =
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Assuming no pole-zero cancellations, the multivariable 
(transmission) zeros of P are the roots of detE, and the 
multivariable poles are the roots of detD.

The poles       of the plants in DS are subset of the MIMO poles.  The 
zeros of the individual plant bear no relation to MIMO zeros. The 
plant at the final design step is directly related to MIMO poles and 
zeros (including MIMO nmp zeros).

k
ijp

The poles       of the plants in IS are subset of the MIMO poles. The 
zeros of the individual plant are subset of MIMO zeros. The plant at 
the final design step is directly related to MIMO poles and zeros 
(including MIMO nmp zeros).

1
k
ijπ
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Consider an example (Murray, 2004).
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Consider closing loops in order from 1st to 3rd.  The effective plants 
at the 1st step are:

( )( )( )
( )( )( )

( )( )
2

3 2

1 1 61 5 10
11 11 3 10 5 7 15 10

11

1
  and  s s ss s

s s s s s s s
p − + ++ +

+ + + + + + +
= =

π

and we observe the DS plant having MIMO poles and no MIMO zeros,
and the IS plant having MIMO zeros and one MIMO pole.

Hence, the 1st loop design in IS does not suffer from MIMO nmp 
limitation, while the DS does.

Assume c1 = 1 in both schemes, the effective plants at the 2nd, 
sequential design step are

( )( )
( )( )( )

( )
( )( )

3 2 4 3 2

3 2 4 3 2

1 13 18 48 16 63 84 1442
22 23 10 15 48 40 16 69 121 116 10

22

1
  and  .

s s s s s s s s

s s s s s s s s s s
p

+ + + − + + + +

+ + + + + + + + − +
= =

π
The nmp zero in      is not due to MIMO zeros, rather, it is due to the 
loop design where c1 affects both zero and pole locations

2
22p

( ) 1 222
22

11 1

det
.

1
P c p

p
p c

+
+
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Similarly, the instability in       is simply due to c1 destabilizing the 
1st loop

2
22

1
π

11
1

11 12
22

221 22
1

1
det det1/ .

det 1
det

cc
c c

π +π +
π = = ππ

π π
π+ +

π
Also, this plant in mp, hence, at this point the MIMO nmp zero 
limitation which affected the 1st loop design, is a no-show here.

Next, assume c2 = 1.  This choice stabilizes both effective plants.  
Hence, at the 3rd, and final, design step, the DS effective plant will 
be stable but must suffer from MIMP nmp zero as shown below 

( )
( )( )

5 4 3 2

5 4 3 2

27 245 874 1178 10163
3 3 10 29 291 1197 2002 960

33

1
 .

s s s s s

s s s s s s
p

+ + + + −

+ + + + + +
= =
π

In summary, nmp MIMO zeros will pose BW limitation in certain 
loops, in both schemes.  The particular loops to suffer such 
limitations depends on order of closer, choice of controllers, and 
nature of the MIMO nmp zero.  This is discussed next.
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15.3. MIMO NMP LIMITATIONS
As expected, the MIMO case is more complicated1.

Consider a standard unity negative feedback system with a a MIMO
plant P and a diagonal controller C.  In what follows, we show how 
the MIMO nmp zeros affect the sensitivity MTF

1 1( ) ( ) .S I PC I L− −= + ≡ +

Specifically, we show how it is not necessary that all elements of S 
suffer from the nmp zero limitations.  That is, certain input/output 
relations can be designed without such limitations.  

Let

11 12 11 1 12 2

21 22 21 1 22 2

L L P C P C
L

L L P C P C
⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

1Yaniv O. and Gutman P.O., “Crossover frequency limitations in mimo nonminimum 
phase feedback systems,” IEEE Trans Automatic Control, Vol. 47(9), 2002, pg., 1560-
1564.
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where

11 1 2 is a  matrix and C  diag(C , ).L k k C× =

Now consider the feedback system shown below.

P
∑

2y−
C

1y1r

The MTF from r1 to y1 is

1
11 11 12 22 21 1 1

22 21
( )

( )

I
L L L I L L L

I L L
−

−

⎡ ⎤
= − + = ⎢ ⎥− +⎣ ⎦

where

[ ] [ ]1 11 12 11 1 12 2 .L L L P C P C= =
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Lemma 1.  Suppose that

[ ] [ ]
1 2 11

11 12 11 12

1 11

(i) ,  and  are full rank

(ii)  any NMP zero of   is not a pole of     

      or a pole of  or a pole of . 

C C L

P P P P

L L

Then, 

[ ]11 12 11each NMP zero of    is an NMP zero of . P P L

Note that conditions (I) and (ii) are generally satisfied.  Next, let

11 12

21 22

S S
S

S S
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

be the partition of the closed-loop system corresponding to the 
above partition. Using the block matrix inversion formula we have

1
11 11( )S I L −= +

which is the sensitivity MTF from r1 to y1.
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This means that if the matrix formed from rows 1,…,m of P have 
NMP zeros, then at least one of the SISO sensitivity functions sii,  i = 
1,…,m, must suffer the NMP zero limitations (i.e., limited crossover 
frequency).

Note that the above is true for any set of rows in P, not necessarily 
in order.  This leads to the key result.

Theorem.   Consider the above partitioned feedback system.  
Assume that it is closed-loop stable, that L11 is NMP, and that the 
conditions of the Lemma are satisfied.  Then at least one of the
actual loop transmissions

, 1, , ,n
i iic p i n= …

must suffer from crossover limitations related to the NMP zeros of

[ ]11 12P P

where P11 and P21 each have m rows.
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Remarks: 

•If detP has NMP zeros, but no combinations of rows of P drop rank 
(other then all of them), then we can assign crossover limitation to 
any sii.

•Say we have a 4x4 plant.  Then if rows {1,2} drop rank and rows 
{3,4} also drop rank, than at least one sii from rows {1,2} and one 
sii from rows {3,4} must suffer from crossover limitations. 

•If some combinations of rows also have NMP zeros, it is possible, in 
general, to select the rows of S that will suffer the crossover 
limitations.

•Increasing the number of plant inputs may remove a MIMO NMP 
zero.
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Example: Consider the plant

1 .11
.1 11

s
P

s

−⎡ ⎤
= ⎢ ⎥−+ ⎣ ⎦

It has an NMP zeros at 10.1 (tzero(P)).  None of its rows has any 
finite zeros.  Also

2
-0.1s 1.01

det
( 1)

P
s
+

=
+

with

1

1
0.1( 1)

0.1 1.01
0.1( 1) 1
0.1 1.01 0.1 1.01

ij

s
s

sP
s s

s s

−

+⎡ ⎤+⎢ ⎥− += − ≡ π⎡ ⎤⎢ ⎥ ⎣ ⎦+ +⎢ ⎥
⎣ ⎦− + − +

We observe that both open-loop plants                   are NMP due to 
detP.  If we design using direct procedure, neither p11 nor p22 are 
NMP; hence, we would have to design loop 2 1st if we wanted to 
assign NMP limitation to 1st loop.

11 22
1 1 and π π
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Arbitrarily select to have the 1st loop suffer crossover limitations. 
The choice of c1 = 1 stabilizes this loop (setting aside 
performance considerations) since

1

11

.1 1.01 .9 2.01
1 1 .

1 1
c s s

s s
− + +

+ = + =
π + +

The effective plant in the 2nd (and last) loop is

3 2
12 212

2222 3 2
1 11

-0.0900s   0.6080s   2.8291s  2.1311
0.9 s  + 3.81 s  + 4.92s  + 2.01c

π π + + +
π = π − =

+ π
3 2

2 3 2
22

1 0.9 s  + 3.81 s  + 4.92s  + 2.01 
-0.0900s   0.6080s   2.8291s  2.1311

=
π + + +

so the effective plant is minimum-phase (but unstable).

Can we design c1 such that         is also mp?  2
22

1
π
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11
1

22
1

2
22 1 22

22
1

11 11

1
det det

11 det
1

det

c

c

c p

c

π⎧ +⎪
⎪ π
⎪

= ⎨π ⎪ +
⎪ π
⎪

π π⎩

π π
+

π

π +

In summary, in order to make future design steps free of nmp 
zeros and/or unstable poles, present design must not only 
stabilize its effective plant, but also additional plant as shown 
above.  Yes, MIMO is complicated….
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15.4. Design algorithms for SISO Elements
Consider again the design problem posed in Chap. 14.  The block 
diagram is shown below.

∑ PC
y

-
r ue

∑

d

( ) 1 .ijT I PC P t−= + = ⎡ ⎤⎣ ⎦

The control problem involves the design of an LTI  nxn diagonal 
controller C that achieves:

• Robust stability, and

• ( ) ( ), , 1, ,ij ijt j i j n Pω ≤ α ω = ∀ ∈P.…

Here we are enforcing specific amplitude constraint on each siso TF 
in contrast to the input/output constraint used in Chap. 14.  This 
specific problem formulation is used more often.
The design algorithms can be readily derived from the ones in Chap. 
14.  If the inputs are impulses, then the outputs, impulse responses, 
are also siso elements of the closed-loop MTF.
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Specifically,
1

11 1 12 2 11 12 11

21 1 22 2 21 22 2

11 12 1

21 22 2

1 0
( )

1 0

0
                      

0

p c p c p p d
y I PC Pd

p c p c p p d

t t d
t t d

−
− +⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= + = ⎢ ⎥ ⎢ ⎥ ⎢ ⎥+⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤
= ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

and when the inputs are impulses, d1 = 1 and d2 = 2, and they 
appear only one at a time (one is on and the other off) we have

( )11 1 1 21, 0t y d d= = =

( )12 1 1 20, 1t y d d= = =

( )21 2 1 21, 0t y d d= = =

( )22 2 1 20, 0t y d d= = =

and the design algorithms for computing bounds are precisely those 
derived in Chap. 14:
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11 1 12 11 121

21 22 2 21 22

1 0
( )

0 1
c y y

P C y d
c y y

− π + π⎡ ⎤ ⎡ ⎤ ⎡ ⎤
+ = ⇒ =⎢ ⎥ ⎢ ⎥ ⎢ ⎥π π +⎣ ⎦ ⎣ ⎦ ⎣ ⎦

where each output yij correspond to a specific input configuration.  
And straightforward adaptation of the algorithms in Chap. 14 gives

12 211 12 21 12 21

11 1 11 1 11 1

11
11 11

d y t
c c ct y + π α−π −π

π + π + π += = = ≥

12 2212 22 12 22

11 1 11 1 11 112 12 .y t
c c ct y π α−π −π

π + π + π += = = ≥

At the 2nd design step, the algorithms are

21

11 1

11 1 12 11 12
2

21 22222

1 0

10 c

c y y
y yc −π

π +

π + π ⎡ ⎤⎡ ⎤ ⎡ ⎤
= ⎢ ⎥⎢ ⎥ ⎢ ⎥π + ⎣ ⎦ ⎢ ⎥⎣ ⎦ ⎣ ⎦

21
11 1
2

222
21 21 21

ct y c
−π
π +

+
= = ≤ απ

2
222

1
22 22 22.t y c+= = ≤ απ
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Recall that the siso elements relates the inputs and output as 
follows

1 11 1 12 2

2 21 1 22 2

y t d t d
y t d t d

= +
= +

and we conclude that using output constraint formulation takes into 
account not only the individual siso TFs but also the nature of the 
inputs.
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15.5. Direct Design algorithms
Consider again the design problem from 15.4.

1
11 1 12 2 11 12

21 1 22 2 21 22

1
1

p c p c p p
T

p c p c p p

−+⎡ ⎤ ⎡ ⎤
= ⎢ ⎥ ⎢ ⎥+⎣ ⎦ ⎣ ⎦

11 1 12 2 11 12 11 12

21 1 22 2 21 22 21 22

1
.

1
p c p c t t p p

p c p c t t p p
+⎡ ⎤ ⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥ ⎢ ⎥+⎣ ⎦ ⎣ ⎦ ⎣ ⎦

Isolating the 1st loop

11 1 12 2 11 11

21 1 22 2 21 21

1
1

p c p c t p
p c p c t p
+⎡ ⎤ ⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥ ⎢ ⎥+⎣ ⎦ ⎣ ⎦ ⎣ ⎦

interchanging elements
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leads to

11 12

21 21 22 12 21
11

11 1 12 1

21 1 22

det
1 1 det

p p
p t p P p t

t
p c p c P

p c p

⎡ ⎤
⎢ ⎥− +⎣ ⎦= =
+ +⎡ ⎤

⎢ ⎥
⎣ ⎦

and the related (conservative) inequality for bound computation

12 21
11

1

det
1 det

P p t
t

c P
+

=
+

Similarly, we can derive a design inequality for t12.

Once c1 is designed, we use Gauss elimination into the working 
matrices.  We end up with design inequalities that do not require 
overdesign.
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15.6. Homework

1. Consider the uncertain plant family

2

11 121

21 22

11 22 12 21

( ) :

[2,5], [2,4], [-.5,.5], [.3,1.5]

s

k k
P s

k k

k k k k

⎧ ⎫⎡ ⎤
=⎪ ⎪⎢ ⎥= ⎨ ⎬⎣ ⎦

⎪ ⎪∈ ∈ ∈ ∈⎩ ⎭

P

and plant output disturbance configurations
1

1 2

1
2 1

)    and   0,  or

)    and   0.

d (j d

d (j d
ω

ω

ω = =

ω = =
Design a diagonal controller C such that the closed-loop system 
achieves

• Robust stability, and

• .( ) ( ), 1,2,  and i iy j i P dω ≤ α ω = ∀ ∈ ∈P d
where

-16-18-24
-14-20-26 dB

321

α2

α1

ω
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You should investigate the stability and nmp/mp nature of the 
effective plant at the last step.

The choice of loop closure is yours, however, you must tune 
your design to minimize the overdesign inherent in the 1st step.

Show all relevant work (avoid figures w/o an explanation).
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