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10. Multivariable Systems: Background

An m-input n-output  multivariable (MIMO) system is described by
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P(s) is called a matrix transfer function (MTF).
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The individual outputs are

A word on notation.  Some books denote vectors using lower case 
and matrices using upper case letters.  We will use a mixed 
notation, as long as it does not create confusion.
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10.1. Matrix Gains
The gain of a SISO system P, y(jω) = P(jω)r(jω), 

( ) ( ) ( )
( )

( ) ( )
y j P j y j

P j
r j r j

ω ω ω
= = ω

ω ω

does not depend on the input. MIMO systems are different animals.

We use vector and matrix norms to define MIMO magnitudes.  For 
example, one measure of the magnitude of a vector x is the 
Euclidian norm
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Hx j x j x j x jω = ω = ω ω∑

where xH denotes conjugate transpose. The gain of the system P at 
a given frequency is then

which depends on the input signal.
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Example: consider a 2-input 2 –output system y = Pr with different 
inputs

1 0 0.707 0.707 0.6
1 2 3 4 50 1 0.707 0.707 0.8

, , , , .r r r r r
−

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= = = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

Note that all input have the same magnitude            but have 
different “directions”.

2 1r =

Now consider the plant
5 4
3 2

.P ⎡ ⎤= ⎢ ⎥⎣ ⎦
The outputs (y = Pr)

5 4 6.36 0.707 0.2
1 2 3 4 53 2 3.64 0.707 0.2

, , , , .y y y y y −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= = = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

clearly depend on the input signal (direction).
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Their 2-norm magnitudes are

1 2 3 4 52 2 2 2 25.83, 4.24, 7.32, 1.00, 0.28.y y y y y= = = = =

Unlike a SISO system, the gain of a MIMO MTF depends on the 
inputs. 

One way to define this gain is to select the specific input vector 
that maximizes the gain (i.e., maximizing direction)

This gain (norm) is called the induced norm on P corresponding to 
the vector norm     .  For example, ifx

the induced norm is
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This is related to Singular Values of a matrix.  Given a square P, its 
singular values σi are defined by

i( ) 0.H
i P Pσ = λ >

The spectral norm is then

(the maximal singular value).  We use the fact that for an 
hermitian matrix P (xTAx > 0 for any x≠0, or AH = A )
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Also, the minimum gain is

0 0

0

2

2

min min
x x

x

H H

H

Px x P Px
x x x≠ ≠

≠

= =

(the minimal singular value).

The singular values of P(jω) are known as principal gains.  It can 
be shown that the gain of a matrix P(jω) is bounded by

The spectral radius of P is

i( ) max ( ) .
i

P P Pρ = λ ≤
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10.2. Systems

The 2-norm of a function y(s) is defined by
0.5

1
22 ( ) ( )d .

H
y y j y j

∞
π −∞

⎡ ⎤= ω ω ω⎢ ⎥⎣ ⎦∫
It can be shown that for a linear system y(s) = P(s)r(s)  

where (the H∞ norm)

In a SISO system

max ( ) .P P j∞ ω
= ω
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10.3. Poles and Zeros

If p is a pole of a SISO P(s)
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( )
n s
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Hence, the poles of P(s) are the roots of the denominator d(s).  In 
a MIMO system
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The poles of P(s) include the roots of the denominator d(s).  
However, the roots of d(s) do not reveal multiplicity of poles of 
P(s).
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If z is a zero of a SISO P(s)

( )
( )

( )
n s

P s
d s

=
then

Hence, the zeros of P(s) are the roots of the numerator n(s).  In a 
MIMO system, z is a zero of P(s) if the rank of P(s) is less than its 
normal rank.  This means that there exists at least one constant
vector v∉0 such that

( )v 0.P z =

and at least one constant vector w∉0 such that

( ) 0.Tw P z =

v and wT are part of nullspaces generated by rows and columns of 
P(z). 
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Note that the roots of detP(s) = 0 may not be all the zeros.  This is 
due to pole/zero cancellations when the minors are formed.

Now consider a system input

1
( )r s v

s z
=

−

The output is given by

This input is blocked from the output!  We call these transmission 
zeros.  
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Example: using MATLAB to computes MIMO poles/zeros.  The 
system 

3 21
( )

3 11

s
P s

s

+⎡ ⎤
= ⎢ ⎥+ ⎣ ⎦

has poles at [-1,-1] and a zero a [3] (even though nij(s) do not).  
This system is said to be non-minimum phase.  To compute these 
using MATLAB:
>>d = [1,1];
>>G = tf({[1,3],2;3,1},{d,d;d,d})

Transfer function from input 1 to output...
s + 3

#1:  -----
s + 1

3
#2:  -----

s + 1

Transfer function from input 2 to output...
2

#1:  -----
s + 1

1
#2:  -----

s + 1
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The poles are the eigenvalues of the state-space realization 

>> eig(G)
ans =

-1
-1

And the zeros are computed from

>> tzero(G)
ans =

3

Note that
3 3 2 6 21 1

( 3)
3 1 3 13 1 3 1

P s
+⎡ ⎤ ⎡ ⎤

= = =⎢ ⎥ ⎢ ⎥+ +⎣ ⎦ ⎣ ⎦

with the rank of P dropping from 2 to 1.
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10.4. Basic Operations

In general, MTFs do not commute.  For example, in the cascade 
system 

P
ur y

C

and in a feedback system

∑ PC
y

-
r ue

∑

di

∑

do
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∑ PC-

iL oLThe open-loop MTF is defined 
based on the location where the 
loop is opened. 

If the loop is opened at the plant 
output, then 

appears in the sensitivity and 
complimentary sensitivity 
functions

which are sometimes referred to as output sensitivity and output
complimentary sensitivity.

If we break the loop at the 
plant input we obtain

with the corresponding input
sensitivity and input
complimentary sensitivity 
functions

For example, 
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Some useful relations: 

To show the above, we use the push-through rule (assuming 
appropriate matrix dimensions) 
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10.5. Internal Stability

Definition. A rational MTF is exponentially stable iff it is proper 
and has no poles in the closed RHP.

Definition. The feedback system shown below is internally stable
iff the MTF from u to e

∑ P

C

1u 1e

∑2e 2u

is exponentially stable.

The above is needed to exclude unstable pole/zero cancellations 
which cannot be detected by Nyquist-like stability results. Hence, 
we need to show that each is exponentially stable. 

If both P and C are stable, it is sufficient to check just one.

If only one is stable, we need to check only a specific MTF for 
stability.  This case is present next.
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Theorem. If C is exponentially stable, then the feedback system 
shown in previous page is internally stable iff

is exponentially stable.

Proof. (only if): immediate.

(if): 

So if C and H21 are exponentially stable, then so is H11.  It follows 
that

is also exponentially stable.
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Finally, 

Which shows that H22 is also exp. stable.  Hence, the feedback 
system is internally stable.
Example. Let

1 1
,

1 2
s

P C
s s

−
= =

− +

Having one closed-loop transfer function stable

does not reveal the whole story since 

is unstable. 
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10.6. Nyquist-Like Stability Results

Theorem.  If C is exp. stable, then H21 is exponentially stable iff   

1) det(I+PC) has no zeros in closed RHP (including infinity), and

2) (I+PC)P has no unstable pole-zero cancellations.

Proof. See Maciejowski (pg. 57). 

The added condition 2) is needed in automatic synthesis techniques 
such as LQG and H∞. When using manual loop-shaping, simply avoid 
introducing unstable zeros and poles in the controller that coincide 
with those in the plant.

Note that in a SISO system det(I+PC) = +PC is the characteristic 
equation.
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Next, we proceed with a generalization 
of Nyquist stability criterion.  We 
consider a square, rational MTF P in a 
series with a gain compensator K = kI
as shown to the right.

∑

- PkI

Recall the Principle of the Argument from Ch 6. Let Γ(s) be the 
Nyquist counter with jω-axis indentations for poles of det(I+kP(s)) .  
Let det(I+kP (s)) have np poles and nz zeros inside Γ(s).  Then as s 
traces ∂Γ once counterclockwise

z pN n n= −

where N denotes the no. of counterclockwise origin encirclements 
by the plot of det(I+kP(s)).

In a SISO setting, it is sufficient to obtain the plot for a single k, 
then infer stability properties for all k ≥ 0. 
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The difficulty in a MIMO setting, is that since we’re dealing with 
matrices, we would have to plot det(I+kP(s)) for each k of interest.

The characteristic loci is now used to overcome this difficulty.  
They involve eigenvalues as follows.

Let λi (s) be an eigenvalue of P(s), so by definition

where u denotes an eigenvector.  Also

implies that kλi (s) be an eigenvalue of kP(s).  So, 

shows that 1+kλi (s) is an eigenvalue of I+kP(s). 

Finally, since the determinant equals the product of the eigenvalues
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That is, we can study closed-loop stability properties by counting 
total number of origin encirclements made by the Nyquist plots of 
1+kλi (s).  Equivalently, we can count the  total number of -1 
encirclements made by the Nyquist plots of kλi (s). 

These plots of λi (s) are called characteristic loci.

Note that each Ny. plot of kλi (s) may not be a closed curve 
(eigenvalues are not rational functions).  But when the 
characteristic loci are drawn together they form a closed curve.

Generalized Nyquist Stability Criterion.  Let L(s) have np

unstable (MIMO) poles. The close-loop system with unity negative 
feedback and open-loop kL(s) (k>0) is stable iff the eigenloci of 
kL(s) encircles the point (-1,0) np time CCW (assuming no hidden 
unstable modes).
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Example:  plot the characteristic loci (cgloci) for
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10.7. Diagonal Dominance

Gershgorin’s Theorem.  Let Z = [zij] be a, mxm complex matrix.  
Then its eigenvalues lie in the union of m circles, each with center 
zii and radius

1

, 1, ,
m

ij
j
j i

z i m
=
≠

=∑ …
1

or   , 1, .
m

ji
j
j i

z i m
=
≠

=∑ …

Now let Z = P(s). At the loci pii(jω) superimpose (pointwise) a circle 
of radius

1 1

( )       or      ( )  
m m

ij ji
j j
j i j i

p j p j
= =
≠ ≠

ω ω∑ ∑

The union of the Gershgorin bands include the characteristic loci 
as illustrated below.
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••

• •
•

•

Hence, we can assess closed-loop stability by counting 
encirclements of the (-1,0) point by the Geshsgorin bands.

Definition. The MTF is said to be diagonally dominant if 

1 1

( ) ( ) ,  or ( ) ( ), 1, , , 0. 
m m

ii ij ii ji
j j
j i j i

p j p j p j p j i m
= =
≠ ≠

ω > ω ω > ω = ω ≥∑ ∑ …



4/4/2005 13-27 Copyright ©2005 (Yossi Chait)

The following result exploit diagonal dominance.

Theorem (Rosenbrock, 1970). Suppose 
that P is square, that  K = diag{ki,…,km}, 
and that

∑

- PK

and let the i’th Gershgorin band of P(jω) encircle the point –1/ki Ni

CCW.  Then the closed-loop system shown above is stable iff

i p
i

N n=∑
where np is the number of unstable poles of P(s) (assuming no 
unstable hidden modes).

The above can also be stated in terms of column dominance (even 
pointwise).

Note that the gains ki in each loop may be different.
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Such Nyquist-array-based stability tests are sufficient, but not 
necessary.  If the bands overlap the -1 point (i.e., we do not have 
diagonal dominance), we cannot decide whether the system is 
stable or not.

It is therefore useful to have diagonal dominance.  Note that 
eigenvalues are invariant under similarity transformation

1( ) ( ).Y XYX−λ = λ

The idea is to find a scaling matrix X that such that XYX-1 is 
diagonally dominant. This can be done at a fixed frequency, but is 
more difficult to achieve at all frequencies.

Note that
1 1(I L)X LXX I X− −+ = +

allows us to infer stability from the bands of XYX-1.
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10.9. Homework

1. Prove the relations on page 16.

2. Show that for the system on page 17

1
11 12

21 22

( ) ( ) ( )
( ) ( ) ( )

H s H s I C s
H s H s P s I

−−⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦
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