
3/22/2005 11-1 Copyright ©2005 (Yossi Chait)

11. Discrete-Time Control: Background1,2

Discrete-time control system are hybrid: part continuous time and 
part continuous time. 
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In studying how to analyze such systems we’ll visit: 
• Impulse sampling and zero-order hold

• z transform

• Stability 

• Design 
1. Ogata, K., Discrete-Time Control Systems, Prentice-Hall, Inc., 1987.
2. Houpis, CH., and Rasmussen, SJ., Quantitative Feedback Theory Fundamentals and Applications, Marcel 

Dekker AG, 1999.
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11.1. Sampling and Hold

An ideal sampler comprises of a switch that closes to admit an 
input signal every sampling period T.  The finite duration of the 
sampling is assumed infinitesimal.  This is called analog-to-digital
(A/D) conversion.  A digital-to-analog (A/D) conversion converts 
to sampled-data signal back to a continuous-time signal – typically 
via a zero-order hold (ZOH) circuit.

tt kT
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For a signal zero at t < 0, h(t) is related to x(t) as follows
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The Laplace transform of a delayed step is

and for the ZOH we jave
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We define

The sampled signal is a train of impulses (the strength of each 
equals x(t) at kT)

where ( ) 0 unless .t kT t kTδ − = =

Nyquist (Shannon’s) sampling theorem says:

A function f(t) which contains no frequency 
components greater than ωc (i.e., band limited) can be 
represented by x(kT) with T < π/ωc.
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In addition to assuming no aliasing, we assume that quantization, 
saturation, and conversion errors in the A/D conversion are 
negligible.

11.2. The z Transform

Define

so we can write 

The machinery developed for Laplace transform domain, such 
frequency response, root locus, and stability analysis is readily 
applicable in the z domain for discrete-time control system 
having sampling as discussed above. 
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Examples of z transforms:
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so

The unit step function

( ) ( )1x t t=

has a z transform of
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A table of z transforms is provided.

Important  Properties.

•

•

• Final Value Theorem: if X(z) has only stable poles (inside 
the unit circle) with the exception of one at z = 1, then the 
final value is

A table of important z transform properties is provided.
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Inverse z transform.

• direct division

• partial fraction expansion

• other methods
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Example. Find x(k) for 
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Since

( )
0
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direct comparison of this infinite series with the long division gives

Example. Find x(k) for ( )
( ) ( )
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z
X z
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If X(z) has one or more zeros at the origin, use this trick
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From z transform tables

Note: if we did not divide by z, the expansion of x(z) would yield 
terms not appearing in the table.
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11.3. The Pulse Transfer Function

Here we study transfer functions in the z domain.  Consider the 
system shown below.  

The continuous-time convolution integral becomes a convolution 
integral in discrete time  
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The pulse transfer function is
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.
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Back to the original system.

To relate sampled signals, we note that

( ) ( )* * , 0,1,2,sX s X s j k k= ± ω = …

so
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and the starred Laplace transform with            becomessTz e=

( ) ( ) ( ).Y z G z X z=

Note that in this system

That is

How do we obtain a pulse TF for a system?  Typically, we use basic 
block diagram algebra and z-Transform Tables (see attachments).

Example. Find the PTF of
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Example. Find the PTF of a closed-loop discrete-time control 
system shown below.
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Combining the last 2 equations gives

Note: we have assumed all samples have same sampling period and 
are synchronized.  

Some systems do not have a PTF.  This occurs when the input signal 
dynamics cannot be decoupled from the dynamics of the system.   

∑

( )r t

T

( )G s
( )c t

−

( )H s



3/22/2005 11-16 Copyright ©2005 (Yossi Chait)

Example.
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Example. E
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Step Scope
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For a unit step

( )
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Since z-1 implies time shift by one sampling period, taking inverse z 
transform gives

Note: it is possible to compute the response between sampling 
instances.
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11.4. s-plane to z-plane Mapping

Stability and performance of continuous-time (CT) systems 
depends on pole location. Since s and z are related by z = eTs, we 
can study these discrete-time properties of a PTF by related z 
domain pole location via the map. 

Poles and zeros in the s plane are mapped to the z plane via z = eTs. 
Denote the complex number s = σ+jω so

( ) ( )2 , 0, 1,T j j T kT jT Tz e e e e e kσ+ ω ω+ πσ ω σ= = = = ± …

Note that s plane frequencies with integer multiple of ωs difference 
are mapped into the same z plane location.

Stable systems have al their poles in the open left-half s plane, or 
in the z plane

The jω-axis in the s plane maps into |z| = 1 circle.



3/22/2005 11-21 Copyright ©2005 (Yossi Chait)

The phase of z, ωT, varies from -∞ to ∞ as ω varies from -∞ to ∞.  
In particular, along the jω axis, as ω varies from -½ωs to -½ωs we 
have |z|=1 and ∠z varies CCW from –π to π.  From -½ωs to -½ωs the 
phase ∠z varies again CCW from –π to π. This is depicted below.
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11.4. Stability Analysis

Discrete-time stability is determined from the roots of the 
characteristic equation 1+L(z)=0. 
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11.4.1 Stability tests

• Jury Stability Test an algebraic test using the characteristic 
equation.

• Routh test via bilinear transformation.
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