11. Discrete-Time Control: Background?:?

Discrete-time control system are hybrid: part continuous time and
part continuous time.
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In studying how to analyze such systems we’ll visit:
e Impulse sampling and zero-order hold

e 7 transform
e Stability

e Design

1. Ogata, K., Discrete-Time Control Systems, Prentice-Hall, Inc., 1987.

2. Houpis, CH., and Rasmussen, SJ., Quantitative Feedback Theory Fundamentals and Applications, Marcel
Dekker AG, 1999.
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11.1. Sampling and Hold

An ideal sampler comprises of a switch that closes to admit an
input signal every sampling period T. The finite duration of the
sampling is assumed infinitesimal. This is called analog-to-digital
(A/D) conversion. A digital-to-analog (A/D) conversion converts
to sampled-data signal back to a continuous-time signal - typically
via a zero-order hold (ZOH) circuit.
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For a signal zero at t <0, h(t) is related to x(t) as follows

h(t) = x(0)[1(t) -1(t - T)]+ x(T)[1(t-T) -1(t - 2T)]
+x(2T)[1(t—2T)-1(t-3T)] +...

The Laplace transform of a delayed step is

and for the ZOH we jave
® —kTs _ e—(k+1)Ts

LIh(®)]=H(s) = I x(KT)"

k=0 S
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We define

The sampled signal is a train of impulses (the strength of each
equals x(t) at KT)

where d(t—kT)=0 unless t =KkT.

Nyquist (Shannon’s) sampling theorem says:

A function f(t) which contains no frequency
components greater than o, (i.e., band limited) can be

represented by x(kT) with T < ©/c.
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In addition to assuming no aliasing, we assume that quantization,
saturation, and conversion errors in the A/D conversion are
negligible.

11.2. The z Transform

Define

SO we can write

The machinery developed for Laplace transform domain, such
frequency response, root locus, and stability analysis is readily
applicable in the z domain for discrete-time control system
having sampling as discussed above.
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Examples of z transforms:

-0} 1

SO

The unit step function
x(t) =1(t)

has a z transform of
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A table of z transforms is provided.

Important Properties.

e Final Value Theorem: if X(z) has only stable poles (inside
the unit circle) with the exception of one at z = 1, then the
final value is

A table of important z transform properties is provided.
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Inverse z transform.

e direct division
e partial fraction expansion

e other methods

10z +5 10zt +5272

Example. Find x(k) for X(z)= (2-1)(2-.2) b

10z 1 +172°+18.423 +16.862% +---
1-1.227140.222 10271 +522
10z71-12772 +2273
17z =27
17272 -20.423+3.4z274
18.4z3-3.47°
18.4z72-22.082* +3.6827°
18.68z7% —3.68z7°
18.68z% —22.4162° +3.73627°
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Since
Xzl = i x(KT)z ™%,
k=0

direct comparison of this infinite series with the long division gives

10z
(z-1)(z-.2)

If X(z) has one or more zeros at the origin, use this trick

Example. Find x(k) for X (z) =
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From z transform tables

Note: if we did not divide by z, the expansion of x(z) would yield
terms not appearing in the table.
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11.3. The Pulse Transfer Function

Here we study transfer functions in the z domain. Consider the
system shown below.
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The continuous-time convolution integral becomes a convolution
Integral in discrete time
o0

y(KT) = 3 g(KT ~T)x(hT)

= > x(KT =hT)g(hT), x(k<)h=g(k<h)=0.
h=0
The z transform of y(kT) is

Y(z)ziy(kT)z‘k:i ig(kT hT)x (hT)

k=0 h=0
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- i i x (hT )z (M) — Z g(mT)z ””Zx(hT)z‘h
ZGEZ)XEZ), m=k-h.

The pulse transfer function is

Back to the original system.

i .

v

To relate sampled signals, we note that
X" (s)=X (s* josk), k=0,12,...

SO
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and the starred Laplace transform withz = eS" becomes
Y(z)=G(z)X(2).
Note that in this system

|

That is

How do we obtain a pulse TF for a system? Typically, we use basic
block diagram algebra and z-Transform Tables (see attachments).

Example. Find the PTF of

1-e ™ 1 §8%
s s(s+1)

|

G(s) =
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Glz) = {1—e—TS 1 }: (1_2_1)2{ 1 }_ (1_2—1)2{12+1+1

s%(s+1) s% s S+J

_(1.,-1\| Tz 1 1 H (T-1+e ")z +{1-e T-Te T)z?
(1—2 ){(121)2 +1zl+1eT21] H (1—2‘1)(1—e‘Tz‘1) '

Example. Find the PTF of a closed-loop discrete-time control
system shown below.

r(t)‘ e(t) S42 e(kT)
'\\ZX_ T
H(s)

EF=R-HC=R-HGE"

c(t)

\4

G(s)

Starring both sides

*

Eriee
R 1+[HG]
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Combining the last 2 equations gives

Note: we have assumed all samples have same sampling period and
are synchronized.

Some systems do not have a PTF. This occurs when the input signal
dynamics cannot be decoupled from the dynamics of the system.

t
ﬂz G(S) C() >

B

T

A
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Example. digital  zero-order

controller hold plant
R E E’
;ﬁ_ ? o K —— ZOH(s)— &1 F—
C =kGE"
E=R-C
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Example. R E £ C
—gzx_ | PID [ ZOH(O)—{ sy [T

\ 4

s FLEEEEK |
PID(s) =K, +Kit1+Kys = PID(z)=K, e Td (1-271)
|

1 | .3697z7'+.264227¢
s*(s+1)] (1-.3697z71)(1-z1)

G(z)=Z[ZOH(s)G(s)] = (1— zl)Z{

Let Kq=Kt=0,K,=1.

9(2)— KoG(z)  .3697z71+.2642z7% .3697z'+.2642
R

A KG ()17 6321772 |72 21 16301
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Scope
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For a unit step

C(2) = 3697271 +.264227% 1
1-z1+.6321272 1-z71
~.3679271+722+1.39967272 +1.39967 % +1.14697° +.89447°% + ...

Since z-1 implies time shift by one sampling period, taking inverse z
transform gives

Note: it is possible to compute the response between sampling
instances.

3/22/2005

11-19 Copyright ©2005 (Yossi Chait)



11.4. s-plane to z-plane Mapping

Stability and performance of continuous-time (CT) systems
depends on pole location. Since s and z are related by z = eTs, we

can study these discrete-time properties of a PTF by related z
domain pole location via the map.

Poles and zeros in the s plane are mapped to the z plane via z = eTs.
Denote the complex number s = c+j» SO

7 — eT(G-I—j(D) Bl eTGejT(D 5l eTGej(T(D+27tk)’ k=0,+1 ...

Note that s plane frequencies with integer multiple of ws difference
are mapped into the same z plane location.

Stable systems have al their poles in the open left-half s plane, or
In the z plane

The jo-axis in the s plane maps into |z| = 1 circle.
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The phase of z, T, varies from -co to c as m varies from -oo to oo.
In particular, along the jo axis, as o varies from -%2ms to -%2ms we

have |z]=1 and £z varies CCW from - to ©. From -2 to -Y2ms the
phase £z varies again CCW from -n to n. This is depicted below.
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z plane
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11.4. Stability Analysis

Discrete-time stability is determined from the roots of the
characteristic equation 1+L(z)=0.
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11.4.1 Stability tests

e Jury Stability Test an algebraic test using the characteristic
equation.

e Routh test via bilinear transformation.

w plane

Im

0=1+L(z)=a,2" +a,.2"  +--- + az' + ag

(W+1j” (W+1)”‘1 (W+1j1
an +ap_1 +o 4+ +ay =0
-w +1 -w +1 -w +1
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