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12. Discrete-Time Control1,2

There are several methods for designing  digital controllers: 

• Continuous-time design followed by controller discretization 

• Frequency response in w domain

• Direct design in z domain (e.g., root locus and QFT Toolbox)

1. Ogata, K., Discrete-Time Control Systems, Prentice-Hall, Inc., 1987.
2. Houpis, CH., and Rasmussen, SJ., Quantitative Feedback Theory Fundamentals and Applications, Marcel 

Dekker AG, 1999.
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12.1. Controller Discretization

We assume the system is LTI and use any LTI design technique, then 
discretize the controller via several methods.

∑
R

T

C
−

plant
zero-order

hold
digital

controller

( )G z ( )ZOH s ( )P s

The hold circuit converts digital controller output from the digital 
controller into an analog signal.  The most common hold is the ZOH 
circuit.  A digital control system (top) and its approximation in a 
continuous-time setting (bottom) are shown below.

The hold circuit introduces delay and attenuates at high 
frequencies.  Pade` approximation often replaces the delay during 
design:
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This approx. is good for ω < ωs/10. A 2nd-order approx. is good for ω
< ωs/3.  Taking into account the sampler, the ZOH is replaced with

The equivalent continuous-time system is shown below.
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controller
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The analog controller can now be design using any of many 
techniques.  We then discretize it and verify performance of the
hybrid control system.  Discretization methods include

• Numerical algorithms

• Transient response invariance

• Matched pole-zero locations

12.1.1. Numerical Algorithms
Consider a simple 1s order filter (controller)

( )U a
s

E s a
=

+
or in its differential equation form

( ) ( ) ( ).u t au t ae t+ =

Integrating both sides

( ) ( ) ( )
0 0 0

.
t t t

u t dt au t dt ae t dt+ =∫ ∫ ∫
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Let t = kT with T the sampling period

with a similar relation at t = (k-1)T.  So 

( ) ( ) ( ) ( )
0 0

0
kT kT

u kT u a u t dt a e t dt− = − +∫ ∫

The above integrals are now evaluated using numerical integration –
backward difference.  Specifically,
Applying this to our equation 
above gives u(t)

time
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and taking z transform results in

( ) ( ) ( ) ( )( )1U z z U z aT U z E z−= − −

leading to this transfer function 

which, when compared with the original U/E=1/(s+a) implies

The same result is obtained using

( ) ( )( )1u kT u k Tdu
dt T

− −
=

( ) ( )( ) ( ) ( )( )1 .u kT u k T aT u kT e kT⇒ = − − −
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Is the mapped filter stable?  In the s domain we require that all 
poles lie in Re[s] < 0, that is

Let                , since T > 0 z j= σ + ω
2 2

2 2
1

Re 0
j

j
σ + ω − σ − σ + ω⎡ ⎤ < ⇒⎢ ⎥σ + ω σ + ω⎣ ⎦

Im

Re

Im

Re

We conclude that this mapping takes stable LTI filters into a stable 
z domain filters.  However, there are frequency domain distortions.
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Another numerical integration method – trapeziodal – leads to a 
better map

u(t)

0 T 2T3T4T
time

Hence

( ) ( )( ) ( ) ( )( )( ) ( ) ( )( )( )1 1
2 21 1 1u kT u k T aT u kT u k T aT e kT e k T= − − − − + − −

whose z transform is

( ) ( ) ( ) ( )( ) ( ) ( )( )1 1 11 1
2 2U z z U z aT U z z U z aT E z z E z− − −= − − + −

leading to the transfer function
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and it follows that the s to z mapping is

Note that

( ) ( ) 12 1
11

z
T z

sG z G s −−
−+

==

has the same number of poles and zeros, and the same number of 
poles as those of G(s).

Let’s study stability of the mapping:

which can be reduced to 
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Im

Re

s plane
Im

z plane

Re

( ) ( ) 12 1
11

z
T z

sG z G s −−
−+

==

Hence, the trapeziodal integration (better known as bilinear or 
Tustin transformation) preserves stability. 

Let’s compare the frequency responses of G(s) and G(z), that is, of
( ) ( ) and .  Let  and  Dj T j T

AG j G z e s j z eω ωω = = ω =

That is
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When        is small then  DTω

implying similar frequency 
responses at “low” frequencies.  
However,                          
indicating frequency distortions. 

1
2D s

A ω → ω
ω ⎯⎯⎯⎯→ ∞
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To minimize such distortion, we 
can adjust the frequency scale by 
shifting the corner frequency as 
follows 
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P=tf(10,[1,10]);

P1=c2d(P,.2,'tustin');

P2=c2d(P,.2,’prewarp’,10);

P1=tf([.5,1],[1,0],’Ts’,.2);
>> get(P1)

num: {[0.609 0.609]}
den: {[1 0.218]}    
Variable: 'z'            

Ts: 0.2            
ioDelay: 0              

InputDelay: 0              
OutputDelay: 0              

InputName: {''}           
OutputName: {''}           
InputGroup: [1x1 struct]   

OutputGroup: [1x1 struct]   
Notes: {}             

UserData: []

( ) ( )

( )

( )
( )

0.2
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tustin
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z
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12.1.2. Transient Response Invariance

We cover here only step invariance method.  The goal is to have

( ) ( )1 1
1

1 1
.

1 t kT
G z G s

sz
− −

−
=

⎡ ⎤ ⎡ ⎤=⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦
Z L

Taking z transform of both sides

or

Hence, the step response of G(s) at t = kT is equal to the step 
response of G(z).  In our 1st order filter

( ) ( ) ( )
( ) 1

1
1

1
1

1

aT

aT

e za
G z z

s s a e z

− −
−

− −

−⎡ ⎤
= − =⎢ ⎥+ −⎣ ⎦

Z
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>>SYSD = C2D(SYSC,Ts,METHOD) converts the 
continuous-time LTI model SYSC to a 
discrete-time model SYSD with sample time 
Ts.  

The string METHOD selects the 
discretization method among the following:

'zoh' Zero-order hold on the inputs
'foh' Linear interpolation of inputs 

(triangle appx.)
'imp' Impulse-invariant discretization
'tustin‘ Bilinear (Tustin) 

approximation
'prewarp' Tustin approximation with 

frequency prewarping. The 
critical frequency Wc (in 
rad/sec) is specified as 
fourth input by

SYSD = C2D(SYSC,Ts,'prewarp',Wc)
'matched' Matched pole-zero method 

(for SISO systems only).

Aliasing of G(jω) at frequency 
beyond Nyquist frequency can be 
a problem, but the 1/s term 
helps attenuate these effects.  
Also, stability is preserved.

Other discretization methods 
such as impulse response 
invariance and matched pole-zero 
are used.
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To summarize, the equivalent continuous-time design involves an 
approximation of the hold circuit, design of an LTI controller and its 
discretization, followed by simulations.  This scheme works with
uncertain plants.  

If sampling frequency is not sufficiently fast with respect to plant 
dynamics we must use direct z domain techniques as presented 
next.   
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12.2. w-Plane Design

As discussed earlier, the s to z mapping distorts the dynamics 
response in the digital domain.  For example, the simple asymptotic 
behavior of 1st order pole, lead/lad elements and others is not 
maintained with the map z = ejωT. The jω-axis is mapped into the 
unit circle |z| = 1. 

As we saw in Chap. 11, the map
1
1

z
w

z
−

=
+

takes the primary strip into an entire left-half complex plane.  This 
potentially imply that s plane frequency response dynamics carry
over to the w plane.  However, 

We can fix this problem using 
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Graphically, we have 

jω

σ
Tsz e=

planes planez planew

j∞2 1
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z
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T z
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sj ω−

2
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Next we compare the complex number w = σw + jωw with s = σ + jω

A similar relation can be developed for the real axis

2
tanh .

2w
T

T
σ

σ =
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As ω increases from 0 to ωs/2, ωw increases from 0 to ∞. 
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To summarize,  
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Let us proceed with a constructive design example. 

∑
R

sT

C
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plant
zero-order

hold
digital

controller

( )G z ( )ZOH s ( )P s

where  

{ }( )
( ) : [1,10], [1,10]k

s s a
P s k a

+
= = ∈ ∈P

and the specs  
( )
( )

( )

* **
* 1 * *

2,

* 1 10.

ZOH

ZOH

P GC
R P G
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We first transform the problem into the z domain   

( ) ( ) ( ) ( ) ( )
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2 2
/ / /
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k k a k a k a

P z z z
s s as s a s

− −⎡ ⎤ ⎡ ⎤−
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( ) ( )2 2 2
1 1 1 1

.
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⎛ ⎞−+⎜ ⎟+⎝ ⎠

As noted earlier, the above is a proper transfer function. Also
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The problem is been transformed into the w domain. 

∑
R C

−

plantcontroller

with specs (ignoring frequency distortion)  

( ) ( ) ( )
( ) ( )

( )
1

2,

10, 1.
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P w G wC
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R P w G w
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Implicit is the assumption  

( )2

2

2

2
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T
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ω

<

<

What sampling time should be selected?  If it’s up to you, then you 
want the smallest possible time.  
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The second inequality implies 

2 0.297
0.6.sT

×
<

ω
But this upper bound seem too slow. To see this, let            
and compare templates.  We consider frequencies up to   
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Next, we compute bounds, then loop shaping.  Let’s check one 
things before we loop shape.  The nominal plant is (k = a =1)
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which in most cases (strictly proper P(s)) has an NMP zero at    

originating from the (1-z-1) term which has a zero at z = 1.  Recalling 
our loop shaping feasibility analysis, we factor the plant as   

and then estimate how much gain reduction LmZOH0 can achieve from 
the spec at ωw = 1 before the all-pass phase delay “beats” it.  We 
use the relation    

( ) dBslope of ( ) ( 20 ).dec90

L j
L j

∠ ω
ω ≈ × −

−
Note that for w domain loop shaping we can use LPSHAPE in a 
continuous-time mode.  
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The question is can 
LZOH0 drop from 20dB 
at ωw = 1 to -25dB?



3/31/2005 12-25 Copyright ©2005 (Yossi Chait)

-360 -315 -270 -225 -180 -135 -90 -45 0

-80

-60

-40

-20

0

20

40

Open-Loop Phase (deg)

O
pe

n-
Lo

op
 G

ai
n 

(d
B

)

0.5

1

10

31.42

0 0ZOH ZOHL P= 1wω =

150−
0mZOHL

We conclude that the sampling time is too large, resulting in 
too much phase lag due to the NMP zero which rules out 20dB 
loop gain at ωw = 1.  The specs cannot be achieved.  A failed 
loop shaping attempt is shown next.
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So we have to decrease the sampling time.  How much?
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To be on the safe side, we seek sampling time such that the all-
pass’s lag of 150° is at, say, above 300 r/s.  For example, for a Ts = 
0.02 sec, that frequency is about 360 r/s.  A successful, stable 
design is shown below (ch12_example.m and ch12_ex_a.shp).  
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There’s one trap we may have ignored.  Recall that as ω→ωs/2, 
then ωw→∞.  The dynamics of PZOH(w) can occur at high 
frequencies; indeed, the nominal plant has a zero at 2400.  Let us 
re-plot the templates, this time at higher frequencies. 

We observe enlarging 
templates at, e.g., 
10000 r/s!
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12.3. Direct z-Plane Design

In the z domain, the block diagram is

∑
R C

−

plantcontroller

and the specs are

( ) ( ) ( )
( ) ( )

( )

21

1

2, , 0, ,

10, .

ZOH s s
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s

P z G zC jTz
R P z G z
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z e P

L z z e

ω ω
+

⎡ ⎤= ≤ = ω ∈ ∀ ∈⎣ ⎦

≥ =

P

Note that frequency dependant weights can be converted using
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A z-domain design is executed just like an s-domain design, but one 
must realize the z-domain frequency response deviates from its s-
domain equivalence at we approach the Nyquist frequency.

Chapter 6 in the QFT Toolbox manual describes details of the 
LPSHAPE GUI in a discrete-time mode. A portion of this manual in a 
pdf version is discussed next.



3/31/2005 12-31 Copyright ©2005 (Yossi Chait)

A successful, stable design is shown below (ch12_example_z.m
and ch12_ex_z.dsh).  A comparison of w and z domain analysis is 
shown below (right).  Can you explain the difference? 
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Note that robust stability is established in a similar manner as done 
in the s domain (see Ch. 4 in manual). 
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12.4. Phase Lag Maximization

It is possible to substantially increase low-frequency loop gain 
without modifying mid and high frequency responses.  The idea is
related to Bode gain-phase relation (IH book. CH. 10.3). 

Consider two loops L1 and L2.  It can be shown that (θ = ∠L)

Similar tradeoff of phase lag (conditional stability here) can be 
exploited for other purposes, such as higher low-frequency 
gains.  Note that conditional stability is not a viable solution in 
some applications.
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Consider again our design earlier in this chapter (ch12_example.m
and ch12_ex_a.shp).  Adding phase lag at low- freq (via complex 
zeros then complex poles) allows for higher loop gains in that freq 
range (ch12_ex_b.shp).  What is the tradeoff?  Conditional 
stability.
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12.5. Homework

Consider a sampled-data control system shown below

∑
R

sT

C
−

plant
zero-order

hold
digital

controller

( )G z ( )ZOH s ( )P s

The plant is

( ) ( )
[ ] [ ] [ ]:   1,10 , 1,5 , 20,30 .

k
k a  b

s a s b
⎧ ⎫

= ∈ ∈ ∈⎨ ⎬+ +⎩ ⎭
P

The specs involve a margin constraint

( ) 1.2, for all , , 0
1

s
s

ZOH j T
T

ZOH

P G
z P z e ,

P G
ω π⎡ ⎤≤ ∈ = ω ∈ ⎣ ⎦+

P

plant output disturbance rejection according to

( ) [ ]
3 2

2
1 64 748 2400

0.02 , , , 0 10
1 14.4 169

sj T

ZOH

z z z
z P z e ,

P G z z
ω+ + +

≤ ∀ ∈ = ω∈
+ + +

P
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and plant input disturbance rejection according too

( ) [ ]0.01, , , 0 50 .
1

sZOH j T

ZOH

P
z P z e ,

P G
ω≤ ∀ ∈ = ω ∈

+
P

Select a “maximal” sampling time such that the specs are met 
and we have robust stability.  You should use the NMP zero 
analysis in the w domain to estimate best sampling time.  You 
can execute either w or z domain design (or both!).  Show all 
pertinent work and derivations.
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