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14. Multivariable QFT Design (Part 1)

In this chapter we begin our introduction to multivariable (MIMO) 
QFT design for feedback systems such as shown below.  We start by 
focusing on square plants, i.e., plants with same number of inputs 
as outputs.  We also assume that  P has an inverse.

∑ PC
y

-
r ue

∑

d

We first present the design procedure constructively for a plant
input disturbance rejection problem, then deal with some 
theoretical issues and close with an illustrative example.  Assume 
the uncertain plant belongs to a set

,   is an    LTI  MTFP P n n∈ ×P
and that the disturbance belongs to a set 

.d ∈d
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The control problem involves the design of an LTI  nxn diagonal 
controller C that achieves:

where y = [y1,y2,…,yn]’. 

The design procedure for a 2x2 plant is developed in the following 
way.

Substituting in the notation
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we get

where d = [d1,d2]’.  

We would like to separately (sequentially) design the two SISO 
controllers, c1 and c2 which allows two SISO QFT designs.  This can 
be accomplished using Gauss elimination. Specifically, multiplying 
both sides on the left with

gives

where
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We can now isolate the outputs

The design procedure is sequential. In this exposition, we start with 
the design of c1 such that

One difficulty here is that y2 is unknown.  On one hand (setting 
aside stability considerations), high gain feedback would do the job 
assuming  y2  is bounded.  But we already saw in earlier chapters 
the disadvantages of high loop gains beyond what is really needed.  

To get around this problem we assume the MIMO design can be 
successfully completed.  Invoking the triangle inequality and a 
worst case response gives a conservative constraint
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The above has a single-loop interpretation as a plant input 
disturbance rejection problem where the MIMO interaction has been 
lumped together with the actual disturbances.  This is illustrated in 
the block diagram below.

∑

-
∑

If a SISO controller c1 can be designed to robustly stabilize the plant  
1/π11 and satisfy the spec on |y1 |, then we can proceed to the next 
step in the sequential procedure.  

Specifically, since c1 is known, the 2nd step is also an input 
disturbance rejection problem as shown below
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∑

-
∑

Unlike the situation in the previous step, no assumption is needed 
and hence the design is exact in terms of a single unknown 
controller c2:

If a SISO controller c2 can be designed to robustly stabilize the plant  
1/π222 and satisfy the spec on |y2| we are done.

Before we go ahead with a design example, let us discuss the 
multivariable stability problem.
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14.1 Stability Considerations

To achieve closed-loop stability, we need to worry about two 
special cases (though you are unlikely to see one in your 
applications).  Assume that det(I+PC) is not identically zero and 
that P and C are at least proper.  A fixed unstable decentralized 
mode is a scenario where you cannot stabilize a multivariable plant 
with a diagonal controller.  

For example, the unstable plant
1 1
1 1

1
10

s s

s

P + −

+

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

is not stabilized by this diagonal controller

1 0
0 1

C
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

even though the diagonal controllers stabilize their corresponding 
loops
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with both siso characteristic equations stable

The sensitivity is
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This is not due the sequential procedure.  The lack of plant 
interaction does not allow stabilization via this diagonal controller.

How to identify fixed decentralized modes (Davison, 1976): A 
minor modification here is the assumption of controllable and 
observable system.

1. Obtain a state-space description (A,B,C): P(s) = C(sI-A)-1B.

2. Find the eigenvalues of the open-loop system ( ).Aλ

3. Choose and arbitrary diagonal static controller K and scale it 
such that .A BKC≈

4. Find                 ; those equal to the open-loop eigenvalues are 
possible hidden modes.

( )A BKCλ +

5. Repeat steps 3-4 until all the fixed modes of A are identified.

Davison, E.J., 1976, Decentralized stabilization and regulation in large multivariable systems, in 
Ho & Mitter, Eds., Direction in large Scale Systems, pp. 303-323, Plenum Press, NY.
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Another special case occur when there is an unstable pole/zero 
cancellation when forming PC or CP.  Unlike SISO plants where such 
cancellation is readily visible, the multivariable case is more 
complex as seen in the following example.  Consider the plant

1 1
1 1

1
30

s s

s

P − +

−

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

1
2

2( 3)
2

0

0

s
s

s
s

C
−
+

−
+

⎡ ⎤
= ⎢ ⎥
⎢ ⎥⎣ ⎦

and the diagonal controller

2( 3)1
2 ( 1)( 2)

2
20

s
s s s

s

PC
−

+ + +

+

⎡ ⎤
= ⎢ ⎥
⎢ ⎥⎣ ⎦

which was designed to “cancel”
unstable poles since

and
-2( 2)2

4 ( 1)( 4)1
2
3

( ) .
0

ss
s s s

s
s

I PC
++

+ + +−
+
+

⎡ ⎤
+ = ⎢ ⎥

⎢ ⎥⎣ ⎦
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Not so fast.  This closed-loop MTF is not internally stable since

This instability is due to multivariable pole-zero cancellation.  
While not minimizing importance of internal stability, exact 
cancellations are simply not going to occur in when the controller is 
designed manually.  And the related considerations that must be 
included in theory are less critical for us.  

Hence, in what follows we have the standing assumptions that our
system does not have unstable decentralized fixed modes, does not 
have unstable multivariable pole-zero cancellations and that 
det(I+PC)≠0.
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In addition, closed-loop stability can also be inferred when using 
non-inversion based algorithms.  In this case the Nyquist 
generalized criterion is applied to the plot of det(I+PC).  Here, we 
also used a sequential procedure. Assume that the 1st loop is 
designed first.  Under the same assumption as above, the closed-
loop system is stable iff c2 stabilizes .

Theorem. Consider a 2x2 MTF P and a diagonal controller C.
Assume there are no fixed, unstable decentralized modes and no 
unstable pole cancellations between P and C. Then the closed-loop 
system is stable iff c2 stabilizes          .1/π222

p222

Proof. This is HW problem.  Prove for both inversion and non-
inversion procedures.  Also show the relation between           and             1/π222
p222. Show details on direct design.

We’ll return to stability issues later.
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14.2.  A  2x2 Example
Consider the uncertain plant family

11 121

21 22

11 22 12 21

( ) :

[2,4], [2,4], [1,1.8], [1,1.8]

s

k k
P s

k k

k k k k

⎧ ⎫⎡ ⎤
=⎪ ⎪⎢ ⎥= ⎨ ⎬⎣ ⎦

⎪ ⎪∈ ∈ ∈ ∈⎩ ⎭

P

and plant input disturbance configurations
1

1 2

1
2 1

)    and   0,  or

)    and   0.

d (j d

d (j d
ω

ω

ω = =

ω = =

The closed-loop system should achieve 

where

0.02510.03160.0501
0.02510.03160.0501

321

2
1

α
α
ω
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We start the sequential procedure by designing the first loop (we’ll 
discuss the order of closure in a later chapter).  Taking plant 
inverse

22 12 11 12_1

11 22 12 21 21 11 21 22

k ksP k k k k k k
− π π⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥− − π π⎣ ⎦ ⎣ ⎦

the SISO plant in the first step is

Performance bounds are computed from the relation derived earlier

1 12 21 12 2
1 1

11 1 11 1
( ) ( ) ( ), for all   and 

dd yy j j P dc c
+ π α− πω = ω ≤ ≤ α ω ∈ ∈π + π +

P d.

For the two disturbance configurations we have
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These constrain the loop’s response at the low frequency range.  As 
in the SISO case, we should always work with reasonable stability 
margins applicable at all frequencies.  In this example let us use

1 111 / 0.6, for all  , 0.c P+ π ≥ ∈ ω ≥P

Recall that these bounds are used as guides for shaping the nominal 
loop.  To achieve robust stability, we must work with the same 
nominal plant throughout the design procedure.  An arbitrary 
choice of the nominal plant is

11 22 12 212, 2, 1.8,  and  1.8,k k k k= = = =

for which
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The inequalities for computing bounds here may not have the forms 
seen in the SISO feedback problems of earlier chapters.  However, 
just as we did there, bounds are actually computed to constrain the 
controller’s response.  We convert them to bounds on a nominal 
loop to achieve stability.  The computations are done using  a 
toolbox function for computing bounds in multivariable problems.

There are two generic inequalities that capture multivariable 
problems.  These are

ptype I/O Problem

10

11

10
A Bg

Ws
C Dg
+

≤
+

11
A Bg

Ws
C Dg
+

≤
+

bdb = genbnds(ptype,w,Ws,A,B,C,D,Pnom)
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The first problem type is the standard linear fractional 
transformation which captures all nine SISO problems covered 
earlier.  The second type fits most problems encountered in 
intermediate steps of a multivariable QFT design.  For example, 

1
12 2

11 1c
ω+
π +
π α ⇒

12 2

11 1c
π α

⇒π +

We are now ready to design.
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The template of the uncertain plant in the first step 

has only gain uncertainty and will be the vertical line on a NC. All 
details of bound computation and loop shaping can be found in 
ch11_ex1_loop1.m.  

11 22 12 12 22

11

( )/1 k k k k k
s

−=π

Let us take a look at the M file.
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It is clear from inspection of the numerators in the performance
inequalities that the first one is “tougher”.  So we need not 
compute bounds for the second one.  The computed bounds and the 
designed nominal loop are shown below.
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We proceed to the second (and last) step in the sequential 
procedure.  The plant used in this step takes into account that the 
other loop is already designed (i.e., closed)

Unlike the plant set in the 
first step, this one is more 
complex due to the 
multivariable interaction 
with the controller.  We 
should expect its templates 
to exhibit more than a 
simple gain variations.  This 
is depicted below for some 
“mid-range” frequencies.
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The nominal plant transfer function also shows this complex nature
2 2 2 2

2 2 2 2 2
22

0.38( /18.2 1)( /6 0.8 /6 1)( /119 1.1 /119 1)1
( /11.5 1)( /19 0.9 /19 1)( /115 1.1 /115 1)

.s s s s s
s s s s s s

+ + + + +
+ + + + +

=π

Two sets of bounds are computed for the two disturbance 
configurations

along with margin bounds
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The computed bounds and the designed nominal loop are shown 
below.

We are almost done.  Evaluation of the closed-loop responses 
completes the design.
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A comparison of closed-loop frequency response sets from d to y
and the performance weights is shown below. 
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Based on what we have learned so far, we can characterize the 
MIMO QFT design procedure for a 2x2 system by the following: 
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14.3. Designing the 2nd Loop First
The technique developed earlier assumed that the first loop is 
designed first.  In general, we should not automatically assume this 
is true.  For comparison purposes, let us now consider the same 
problem but design the 2nd loop first.  

There are two approaches.  We can re-derive the algorithms by 
explicitly starting with design of c1 to meet the specification on y2.  
However, an easier method is to permute the MTFs which allows us
to maintain the same algorithms and notation.  This is done as 
follows.

Let A [Yaniv, Ch. 4]  be an nxn row or column permutation matrix 
reflecting the order of loop design.  For example, in a 2x2 system, 
designing the 2nd loop first implies that
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Suppose that the diagonal C robustly stabilizes the system shown 
below

∑ C
y

-
∑

Ad
1APA−

and achieves the performance

1 1

2 2

( ) ( )
,

( ) ( )
y j

A
y j

ω α ω⎡ ⎤
≤ ⎢ ⎥ω α ω⎣ ⎦

then the controller 
1A CA−

also solves the previous problem (where the 1st loop was designed 
first):

∑
y

-
∑

d
1ACA− P
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The proof is straightforward.  From the block diagram

After some basic matrix algebra we get

Comparing that with the output in the original block diagram 
without permutations (call it      and the controller is     ) 

1 1

11 1

1 1 1

11 1

1 1

( )

( )

( )

( )

( ) .

y I APA C APd

A I APA C Pd

A PA C Pd

I APA CA A Pd

A I PA CA Pd

− −

−− −

− − −

−− −

− −

= +

⎡ ⎤= +⎣ ⎦
= +

⎡ ⎤= +⎣ ⎦
= +

oy oC

we see that
.oy Ay=
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Recall that the original specifications on y were also pre-multiplied 
by A.  Since A  can only permute, we conclude that  if

then

P dα ω⎡ ⎤
ω = ω ≤ = ∀ ∈ ∀ ∈⎢ ⎥α ω⎣ ⎦

K
1

2

( )
y( ) ( ) , 1, ,  and 

( )Oj Ay j A k n P d

1
.

2

( )
( ) , 1, ,  and 

( )Oy j k n P d
α ω⎡ ⎤

⇒ ω ≤ = ∀ ∈ ∀ ∈⎢ ⎥α ω⎣ ⎦
P dK

In our 2x2 system,  a design starting with the 2nd loop would result 
in the following controller for the original (non-permuted) system

1
11

2

0 1 0 0 1
1 0 0 1 0O

c
C A CA

c

−
− ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦
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Back to our example.  To design the 2nd loop first, we permute the 
plant

1
11 121

21 22

0 1 0 1
1 0 1 0

p p
APA

p p

−
− ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

1
22 21 22 21

12 11 12 11
.

p p
p p

− π π⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥π π⎣ ⎦ ⎣ ⎦

The permuted disturbance and specification vectors are

1

2

0 1
1 0

d
Ad

d
⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

1

2

( )
( )

A
α ω⎡ ⎤

=⎢ ⎥α ω⎣ ⎦
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Following the same sequential design algorithms using in the 
previous example, we design c2 first then c1.  The details can be 
found in ch11_ex1_loop2.m.   The designed nominal loops 
(after permutation) and closed-loop responses vs. weights are 
shown.

2nd loop designed first                                 1st loop designed second

∑
y

-
∑

d
1ACA− P
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Evaluation of this design is shown below. We observe that the 
second loop now appears to have the over-design (why?).
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Comparison of the controllers reveals this behavior.  In any 
particular problem, considerations of sensor noise and actuator 
nonlinearities must be taken into account in deciding the order of 
loop design.  We will see later how non-minimum phase zeros can 
also affect this choice.
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Consider again the plant input disturbance rejection problem in the 
previous chapter but now assume the plant to have n inputs and n
outputs. 

14.4. A General Plant Input Disturbance 
Rejection Problem

∑ PC
y

-
r ue

∑

d

Using the notation

[ ]
[ ]

1 1

1 2

1 2

1 2

[p ], 

diag( )

,

.

ij

c , c , , n

T
n

T
n

P ij P

C c

d d ,d , ,d

y y ,y , ,y

−

=

=

=

⎡ ⎤= = π⎣ ⎦
K

K

K

The robust performance problem is: 

• Robust stability, and

• .( ) ( ), 1, , for all  and k ky j k n P dω ≤ α ω = ∈ ∈P dK
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We perform the standard operations used in the 2x2 case: 
1

1

( )
( )

.( )y

y I PC Pd
I PC y Pd

dP C

−

−

= +
+ =

=+

And using the above notation we have in detail
1 1 1 1
11 1 1 112 1

1 1 1 1
2221 22 2

1 1 1 1
1 2

n

nn

nn nn n nn

c dy
yc d

yc d

⎡ ⎤ ⎡ ⎤π + π π ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥π π + π⎢ ⎥ ⎢ ⎥⎢ ⎥ =⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎣ ⎦ ⎢ ⎥π π π + ⎣ ⎦⎣ ⎦

L

L

MM M M M M

L

where the superscript 1 denotes the original plant inverse.

Without loss of generality, we design starting with the first loop in 
order to the n’th.  Isolating the first output gives

1 1
1 12

1 1
11 1

1 1

            

Spec:    ( ) ( ).

n
i iid y

y
c

y j

=− π∑=
π +

ω ≤ α ω
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At this stage, the remaining loops have not been designed yet.  
Hence, we must assume that there exists a controller C that solves 
the feedback problem.  Using triangle inequality

1 1
1 12

1 1
11 1

( )
n

i iid y
y j

c
=− π∑

ω =
π +

This above must be satisfied in spite of plant uncertainty, leading 
to the final inequality used to compute QFT bounds

1 1
1 1

.11
11 1

2 ( ), ,  
n

i id i j P d
c

+ π α∑ = ≤ α ω ∀ ∈ ∀ ∈
π +

P d
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Because of the single unknown term above, we can interpret it as a 
single-loop feedback problem where the objective is to design c1 to 
satisfy the above performance inequality and robustly stabilize the 
system shown below.

∑

-
∑

1y
11

1
π1c

1d

1 1
1 1 2 1

n
ii id d =≡ + π α∑

Having successfully designed the first loop, we proceed to the 
next, second loop.  However, to reduce the required upper 
bounding, we “roll” the known  c1 into the remaining loops.  This 
is done by pre- multiplying both sides of the governing matrix 
equation with (i.e., Gauss elimination)  

1
21

1
11 1

1
1

1
11 1

2

1 0 0

1 0

0 1n

c

c

V

−π
π +

−π
π +

⎡ ⎤
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

L

L

M M M M

L
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giving
1 1 1 1
11 1 1 112 1

2 2 2
2222 2 2

2 2 2
2

0

0

n

n

nnn n nn

c dy
yc d

yc d

⎡ ⎤ ⎡ ⎤π + π π ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥π + π⎢ ⎥ ⎢ ⎥⎢ ⎥ =⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎣ ⎦ ⎢ ⎥π π + ⎣ ⎦⎣ ⎦

L

L

MM M M M M

L

where
1 1
1 1

1
11 1

1 1
1

1
11 1

2 1

2 1

, 2, , , 1, , ,

, 2, , .

i j

i i

ij ij c

i i

i n j i n

dd d i nc

π π
π +

+

π ≡ π − = = +

π≡ − =π

K K

K

Isolating the second output gives

Note that the equation shows explicit MIMO interaction between the 
second and 3rd to n’th loops.  The interaction with the first loop is 
made implicit by design via the terms 2 2

2  and  .ij dπ
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The interaction with the yet to be designed 3rd to n’th loops is 
replaced using the upper bounding as before resulting in

2 2
2 23

2
222

.2 2( ) ( ), ,  
n

iiid

c
y j j P d=+ π α

π +
∑ω ≤ ≤ α ω ∀ ∈ ∀ ∈P d

This single-loop feedback problem involves design of  c2 to satisfy 
the above performance inequality and robustly stabilize the system 
shown below.

∑

-
∑

2y
2
22

1
π2c

If we can successfully complete the design of this loop, we proceed 
to the next one.
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Once again, we “roll” this design into the remaining loops using the 
pre-multiplying matrix
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Or in a detailed form
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where
2 2
2 2

2
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2 2
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2
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ii
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π π
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+

π ≡ π − = = +

π≡ − =π

K K

K

This sequential process of designing the i’th loop controller ci

followed by “rolling” it into the remaining loops by pre-multiplying 
the governing matrix equation is repeated until we design cn-1 and 
arrive at the last step.  Using the pre-multiplying matrix
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L
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we have



4/14/2005 14-41 Copyright ©2005 (Yossi Chait)

The detailed matrix equation in the last step shows that we have
only one unknown left, the last controller cn

where

1 1 1 1 1
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Clearly, the n’th output depends only on cn
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Hence, applying the performance constraint no longer requires 
upper bounding.  The n’th step is always a simple single-loop 
system (shown below) that contains all plant interaction and 
previous n-1 designed controllers.  

∑

-
∑

ny1
n
nnπnc

The design performance inequality is given by

.( ), ,  
n
n

n
nn n

n
d j P dc+ ≤ α ω ∀ ∈ ∀ ∈π P d
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14.5.  Notes On the General Problem

1.  Given our standing assumptions, stability of the closed-loop 
system is achieved if the last step is successfully completed. That 
is, cn stabilizes the plant 

1 .n
nnπ

2.  However, successful completion of the above does not guarantee 
reasonable stability margins at different input-output points.  For 
example, even if the SISO system designed at the last step has good 
margins, say of the form, 

1
1 ,

1
,

n n
nn

nW Pc+ ≤ ∀ ∈
π

P

which guarantees a particular margin w.r.t. plant uncertainty and 
multivariable interactions, the design at the k’th step (k<n) with 
the margin-like spec 

1
1 ,

1
,

k k
kk

kW Pc+ ≤ ∀ ∈
π

P
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Our earlier example can be 
used to illustrate this important 
point.   The 2nd loop design 
dealt with the exact plant, 
however, the plant at the first 
step (first loop) IS NOT the 
actual plant.  The result is lack 
of margins guarantee at the 
first step.  Indeed, the peaking 
in              surpasses its weight. 101 102-2

-1

0

1

2

3

4

5

rad/sec

dB

does not guarantee similar margin property for the k’th channel.  
This is since the plant           does not contain information about the 
closed-loop dynamics of the loops yet to be closed (k+1 to n).  We 
overcome this difficulty by using over bounding to meet 
performance specs, but this approach cannot be applied for the 
margins spec.  We will see how to resolve this problem later (Yaniv, 
pg. 160).
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