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In this chapter we briefly discuss a widely used method for 
synthesizing controllers.  We start with Linear Quadratic Regulator 
(LQR) which uses all the plant’s states for feedback

17. OPTIMAL CONTROL

We then present an overview of Linear Quadratic Gaussian (LQG) for 
problems where not all states can be measured and there exists 
process and sensor noise.  LQG computes the optimal observer 
needed to estimate the plan’s states (which are needed for LQR). 

We conclude by presenting Loop Transfer Recovery (LTR) which is 
aimed at improving stability margins.

17.1. Preliminaries. A system model can be written in the MTF 
format, or in state space form which shows the differential 
equations underlying the MTF.  For example, consider a siso plant
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Assuming zero initial conditions, the linear differential equation that 
gave rise to the above is

( ) 7 ( ) 12y( ) 2u( ).y t y t t t+ + =

We assign states to the model, one for each derivative (2 here).  
There are several ways to do this. For example, define
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This state-space model has the matrix form
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The system output y(t) is computed from the states
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The general state-space form is
x Ax Bu
y Cx Du
= +
= +

where D denotes a direct connection from the inputs to the outputs 
(i.e., proper MTFs).

Note that there a number of ways we can represent the model in 
state-space form, all similar to each other via similarity 
transformations.  Also

1( ) ( ) .P s C sI A B D−= − +
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As discussed in Chap. 13, the poles of the MTF appear in the 
eigenvalues of A.  The zeros of an MTF are computed using the state-
space form.

Some related MATLAB commands are
sys = ss(A,B,C,D)

sys = tf(N,Den)

[A,B,C,D] = ssdata(sys,’v’)

tzero(sys)

eig(sys)  or eig(A)

It is possible that given the state-space structure, some of the states 
cannot be affected by control action.  In SISO, this means pole/zero 
cancellation; this also occurs in MIMO systems, but may not be seen 
directly from the MTF. The term controllability describes this 
property. 
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Similarly, there are states not seen in the output due to pole/zero 
cancellation. The term observability describes this property.  

In what follows we assume that the system is controllable and 
observable (do not assume that as a rule).  The MATALB functions
to check these are CTRB and OBSV.
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17. Other Techniques

17.1. Linear Quadratic Regulator. LQR is an optimization problem 
that synthesizes a full state-feedback law

cu K x= −

that minimizes a quadratic performance index of the form

( )
0

T TJ x Qx u Ru dt
∞

= +∫

where Q and R are weighting matrices satisfying

 is positive semidefinite:  0

 is positive definite:  0
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The control law that minimizes the cost function is given by

1 T
cK R B P−=
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where P is the solution of the Algebraic Riccati Equation (ARE)

10 .T TPA A P Q PBR B P−= + + −

If the unstable modes of the system are both observable and 
controllable, then there exists such a P.

The selection of Q and R to generate desired closed-loop system 
dynamics is iterative.  Nevertheless, the insight gain during such 
iterations at the initial design phase is exploited at the latter 
stages.  Next, let us consider an illustrative example (ltr_ex.m).

The model for an inverted pendulum (see Sidi for details)
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linearized about the “up” position is

1

2

3

4

0 1 0 0 0
0 0 4.905 0 1

,
0 0 0 1 0
0 0 29.43 0 2

x
x

x Ax Bu u
x
x

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥ ⎢ ⎥= + = +
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

.

l

l

x
x

x

⎡ ⎤
⎢ ⎥
⎢ ⎥=
θ⎢ ⎥

⎢ ⎥θ⎣ ⎦

>> eig(A)
ans =

0
0

5.4249
-5.4249

The plant has 2 integrators and 
one unstable pole (why?).  

>> rank(ctrb(A,B))
ans =

4

Checking for controllability

Since the rank equals the number of states, this system is 
controllable.
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Let us arbitrarily select

diag[20,2,20,2],  10.Q R= =

Hence, the 1st and 3rd states are considered more “important” in 
terms of the cost function.
The solution can be obtained from either LQR or CARE functions.  
For example,

[P,EK,Kc] = care(A,B,Q,R);

The optimal state-feedback controller is u = Kcx

[ ]-1.4142   -2.6505  -38.3871   -7.4840 .cK =

The closed-loop system matrix is

( )c c clx Ax Bu Ax BK x A BK x A x= + = + = + =

whose eigenvalues are

(-15.5234,-2.2843+1.4678i,-2.2843-1.4678i,-3.4287).



5/6/2005 17-10 Copyright ©2005 (Yossi Chait)

Another choice of weights with a relaxed control constraint

diag[20,2,20,2],  R 0.05Q = =

results in

[ ]-20.0000  -19.5151  -98.3058  -21.5179cK =

Responses for an initial condition 
of θ=10° is shown below.
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We observe that relaxing the 
weight on the control effort results 
in a larger u(t) which in turn limits 
the maximal deviation of x(t).
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In general, Q and R are used to trade off performance of the states 
and control effort.  There is no exact relation, but one can find 
numerous papers/books discussing this topic.  A solution exists for 
any admissible pair (Q,R) (no RHP zeros!).

The margins computed for a loop transmission between a state and
an input can be shown to be at least 60° PM and 2 (6 dB) GM.  
These loops always have a relative degree of one.  Both of these
properties are largely non-practical.  The loop (with the system 
opened at the plant input is

1( )sI A B−−∑
cK−

xu
1( )cL K sI A B−= −

it can be shown that (SISO)

( ) 90L j
ω→∞

∠ ω ⎯⎯⎯→−

meaning the loop has one more pole than zero.
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In addition, it can be shown that

( ) ( )( )1det det ) 1cI L I K j I A B−+ = + ω − ≥

which has this graphical interpretation

ReL

ImL

1−

( )L jωmin  60

Similar relations were developed for a MIMO system.  Specifically, 
the 60° PM and 2 (6 dB) GM properties hold for each       Of course, 
we recall that this alone does not guarantee MIMO margins!

.n
iip

Finally, the above LQR formulation has no inputs.  It is possible to 
modify the setup to, for example, allow for a model-following 
problem.
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17.2. Linear Quadratic Gaussian (LQG)
LQR requires knowledge of all the states.  However, in practice,
the only some of the states are measured (outputs).  Consider a 
linear system whose dynamics are affected by a disturbance and 
the measurements are corrupted by noise

x Ax Bu w
y Cx v
= + +
= +

where v and w are stationary, zero mean, Gaussian white noise 
processes with covariance matrices V ≥ 0 and W > 0, respectively.  
It is assumed that v and w are uncorrelated, that is E(wvT) = 0.

Next, consider the linear system

( ).ˆ ˆ ˆfx Ax Bu K y Cx= + + −

where
1T

fK C V −= Σ

and where Σ is the solution to the ARE
10 .T TA A W C V C−= Σ + Σ + − Σ Σ
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Then

( ) ( )( ) minimizes ˆ ˆ ˆTx E x x x x− −
and

( ) 0.ˆE x x− =

The combined system is shown below.
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This estimator is known as the Kalman-Bucy filter.  A very famous 
invention with wide-ranging applications.

The full-state feedback law can be combined with the estimator to 
result in an dynamic, output feedback controller of the form

( ) .c c f fG K sI A BK K C K= − − − −

The noise parameters V and W are used as design “knobs” to affect 
the dynamics of the overall controller G.

For example,  assume that the linear velocity and the angular rates 
of the pendulum system are un-measurable.  So
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and let
2 2 2 2 2 2diag(0.02 ,5 ,0.01 ,5 ),  diag(0.01 ,0.01 ).W V= =
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The solution can be obtained from either LQG or CARE functions. 
For example,

[Sigma,EKf,Kf] = care(A',C',W,V);

The optimal filter gain is

31.69 0.081
500.1 5.05

.
0.081 32.58
0.145 530.4

fK

−⎡ ⎤
⎢ ⎥−⎢ ⎥=
−⎢ ⎥
⎢ ⎥−⎣ ⎦

The separation principle shows that the solution to the LQG 
problem involves separate designs of full-state LQR system and a 
Kalman-Bucy filter.  Hence, a solution is guaranteed.  The 
matrices Q, R, W, and V are used for tuning purposes.
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17.2. Loop Transfer Recovery (LTR)

Doyle and Stein (1979) discovered a basic weakness of this design in 
terms of stability margins.  To correctly analyze robustness vs.
plant uncertainties, the loop must be opened at point 2 which is
the plant input u.  When the loop is opened at point 1, the same 
uncertainty will be seen also by the estimator which effectively
nullifies the fact the estimator design is based on a nominal plant.  

Loop Transfer Recovery (LTR) has been proposed to overcome this 
weakness.  When the loop is broken at point 2, the loop is

-1
2

-1

( )

   ( ) ( )c c f f

L GC sI A B

K sI A BK K C K C sI A B

= −

= − − − −

while when the loop is opened at point 1 we have
-1

1 ( )c cL K sI A BK B= − −

which is the original LQR loop.  
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LTR, by proper selection of W and V, attempts to recover the 
margins for a full-state feedback system, that is

2 1.L L→

To do so, it can be shown that the covariance matrix W is to be 
augmented as follows

2 T
LTRW W BSB= + ρ

for some matrix S ≥ 0 matrix.  When ρ→∞, if P is MP, we can show 
that LTR’s margins are fully recovered at loop point 2.  

Essentially, G(s) inverts the plant and adds some far-off poles.  
When the plant is NMP, this is not feasible.  Nevertheless, we are 
not interested in having L2 match L1 at all frequencies since L1 has 
a relative degree of 1 (hence, is sensitivity to noise at high 
frequencies).

It is possible to also recover loop properties at the plant output 
using a similar procedure.
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LTR works best for a square, MP plant.  If the plant is NMP, the
usual limitation of such zeros is applicable (limited cross-over 
frequency) and recovery is available only up to a limited bandwidth 
(the LTR controller will not have the NMP zeros as its poles).

A non-square plant requires some additional work to square it out.

Example (Franklin et. al., 2002, undergrad control text).  Consider 
a satellite attitude control problem with a state-space description 
(a double integrator) (ltr_ex2.m)

[ ]
0 1 0

,   ,   1 0 ,   0.
0 0 1

A B C D
⎡ ⎤ ⎡ ⎤

= = = =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦2

1
P

s
=

We first design an LQR controller for

,   1.TQ C C R= =

The LQR’s loop transfer function is 

1
2

1.414( 0.707)( ) .
sc
sK sI A B− +− =
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Next, we design the LQG controller to recover loop response at the 
plant input using

2 ,   ,   1.Tq B W VΓ = = ΓΓ =

The compensator is (for q = 10)

1 155.56( 0.6428)( ) .( 7.77 7.77)( 7.77 7.77)c c f f
sG K sI A BK K C K s j s j

− += − − − = + + + −

And  together with the double integrator plant it forms the loop
transfer function

2
155.56( 0.6428)

s ( 7.77 7.77)( 7.77 7.77)
sL PG

s j s j
+= =

+ + + −

The figures next page compare the loops corresponding to LQR 
and LTR with q = 1, 10, and 100. 
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We observe that as 
q is increased, the 
LTR loop gain 
approaches that of 
the LTR, but not the 
phase.  Note that 
the LQR’s loop has a 
relative degree of 1, 
the same as the 
LTR’s controller.  
Hence, the LTR 
loops has a total 
relative degree of 3 
(2 from the plant).
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LTR’s margins were nearly recovered with q = 10: GM=2.1 dB and 
PM = 55°.

LQR, LQG, and LTR cannot explicitly account for plant 
uncertainty.



5/6/2005 17-22 Copyright ©2005 (Yossi Chait)

17.3. Stability Robustness with 
Unstructured Uncertainty

Recalling our uncertainty representations, assume the siso plant has 
a has a (input multiplicative) form   

0( ) ( )(1 ( ) ( )), ,  stable,  ( ) 1P s P s W s s W j ∞= + ∆ ∆ ∆ ω <

where W(s) is a weighting function used to specific a frequency-
dependent level of uncertainty. 
In addition we assume that the nominal closed-loop system is stable. 
Clearly, this system is stable if the Nyquist plot of CP has the same 
number of encirclements. Details of the proof are left out, but 
essentially, we have robust stability iff the Nyquist envelop does not 
include the (-1,0) point, namely

1 ( ) 0CP j+ ω > 0 01 0CP CP W⇔ + + ∆ > 0
0

0
1 1

1
CP

CP W
CP

⇔ + + ∆
+

0
0

0
1 0 (1  has only stable roots)

1
CP

W CP
CP

⇔ + ∆ > +
+ 0 1T W⇔ ∆ <

0
1

 ( )   (since ( ) 1)
( )

T j j
W j ∞⇔ ω < ∆ ω <

ω
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This inequality can also be derived using block diagram algebra

P∑
−

C

∑
−

∑

∑
−

Application of the small gain theorem says that we remain stable if 

0 1.T W∆ <
Another way to look at this uncertainty is from a performance stand 
point.  Assume that plant is fixed P = P0, and that in addition to 
stability we have a performance weight on the complimentary 
sensitivity function

1
( )  .

( )
T j

W j
ω <

ω
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Different uncertainty structures leads to constraints on different 
closed-loop functions. For example, with an additive uncertainty 
model

0( ) ( ) ( ) ( ), ,  stable,  ( ) 1P s P s W s s W j ∞= + ∆ ∆ ∆ ω <

We have robust stability iff

0
1

( )  .
( )

CS j
W j

ω <
ω

In a mimo setting, an input multiplicative uncertainty has the form

0 1 2 1 2( ) ( )(1 ( ) ( ) ( )), ,  stable,  ( ) 1P s P s W s s W s WW j ∞= + ∆ ∆ ∆ ω <

The weighting matrices are used to model the frequency and 
directional dependency of the uncertainty (since matrices do not
commute in general).  It can be shown that a necessary and sufficient 
condition for robust stability is

2 1 1.IW TW ∞ <
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For more details, there are numerous books on this topic.  One 
excellent reference for feedback control see:

J.S. Freudenberg, C.V. Hollot and Looze, D.P., A first graduate 
course in feedback control, (contact hollot@ecs.umass.edu). 

In a general mimo system with uncertainties we can re-draw the 
block diagram to have this form

where, for example, the ∆ block is a 
3x3 diagonal MTF

∆

M

C

1

2

3

0 0
0 0
0 0

∆⎡ ⎤
⎢ ⎥∆ = ∆⎢ ⎥

∆⎢ ⎥⎣ ⎦

with some diagonal elements corresponding to plant uncertainty and 
some to performance weights.
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The H∞ control design method returns, if it exists, the optimal 
controller C(s) such that it achieves robust stability and nominal 
performance with respect to fully populated, complex matrix ∆

.1<∆ ∞

Hence, the name unstructured uncertainty. With some over design, 
H∞ can achieve robust performance.
The µ-synthesis technique attempts to add pre and post scaling 
matrices to ∆ to exploit its structure.  In most cases, this is a nonlinear 
optimization.
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