
2/15/2005 6-1 Copyright ©2005 (Yossi Chait)

6. Stability of SISO Feedback Systems

Let F(s) = N(s)/D(s), N & D co-prime polynomials.  Let  Γ(s)  be a 
closed contour in the s-plane.  Assume F(s) has no zeros or poles 
with values ∂Γ.  The Principle of the Argument states that as s 
traces ∂Γ once counterclockwise, F(s) traces a closed counter in 
the s-plane.  Moreover,

z = N +  p

where

• p = no. of poles of F(s) inside Γ(s), 

• z = no. of zeros of F(s) inside Γ(s), 

• N = no. of counterclockwise origin 
encirclements by the plot of  F(s) 
(<0 if CCW, >0 if CW).
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6.1. Nyquist Stability Criterion

A simply application of the Principle of the Argument with F(s) 
the open-loop transfer function of a closed-loop system and Γ(s) 
the closed right-half s-plane.  Assume L(s) has no poles on the 
imaginary axis and no unstable pole/zero cancellation.  For the 
feedback system shown below:

The characteristic equation is 
1 + CPH(s) = 0.  The open-loop 
transfer function here is L(s) = 
CPH(s).
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6.2. Properties of  Θ

What about encirclements on a Nichols chart

= φ ≤ φ < − ∞ < < ∞{( , ):   -360 0 , }?NC r r

The map

is one-to-one at all points s not on the positive real axis and 
orientation reversing (due to choice of NC axis). So, if  Γ is a 
closed curve in the complex plane then Θ(Γ) has the following 
properties:
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i. Each clockwise winding of  Γ about origin (N>0) will result in  
Θ(Γ)  traversing the NC from right to left (i.e., 0° to –360°). 

ii.Θ(Γ) May not be a closed curve (due to discontinuity across 
positive real axis).  Each time  Γ hits the positive real axis, 
Θ(Γ) disappears at the right or left margin of the NC and 
reappears on the opposite side.

iii.To retain continuity, we can extend the NC periodically in 
the angular coordinate φ.  A Nyquist curve winding k times 
around origin would be transformed this way into a curve 
drawn along a scroll of at least k Nichols sheets.



2/15/2005 6-5 Copyright ©2005 (Yossi Chait)

6.3.  Evaluating Stability using Nichols Plots

Assume the loop transmission, L(s), is a product of a rational 
(proper or strictly proper) function and a pure time delay.  
Further assume that no unstable pole/zero cancellations take 
place in  L(s).  

We consider a standard Nyquist contour, with right jω-axis 
indentations as necessary to account for imaginary axis poles of
L(s)  is shown below.

x

A standard continuous-time Nyquist contour.
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Definition. The Nyquist plot of  L(s) is said to have a crossing if it 
intersects the negative part of the real axis, Re[L(s)] < -1.  The 
sign of the crossing is either positive or negative, depending on 
the direction of the plot at the crossing point.

Crossings and corresponding signs in the complex plane, Nichols 
and Bode plots are shown below.
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The following is our Nichols plot stability criterion.  Let  p denote 
the total number (counting multiplicity) of the unstable poles of  
L(s) inside the Nyquist contour.

Criterion 1. The feedback system is stable if:

•The single-sheeted Nichols plot of L(s) does not intersect the 
point  q := (-180°, 0dB), and the net sum of its crossings of the 
ray  R0 := {(φ,r): φ = -180°, r > 0dB}  is equal to  -p; or

•The multiple-sheeted Nichols plot of L(s) does not intersect any 
of the points  (2k+1)q, k = 1,…, and the net sum of its crossings 
of the rays  R0 + 2kq  is equal to -p.
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We observe some useful properties of the sign of L(0) (i.e., DC 
gain).  Assume that the closed-loop system is stable and  L(s) has 
no jω-axis poles.  Let  ϖ denote the smallest cross-over 
frequency that is larger than all frequencies of  R0 crossings.

•arg L0(ϖ) must be >-180° when L(s) has an odd number of 
unstable poles (or the no. of crossings cannot be odd).

•arg L0(ϖ) must be >-180° and L(0) cannot lie on R0 when L(s) has 
an even number of unstable poles and |L(0)|>1.
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6.4. Examples

Example 1.  Consider a unity feedback system that has the 
following stable open-loop function

The Nyquist plot and its version on a multiple-sheeted Nichols 
chart are shown for k = 3000.
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Nyquist Diagram
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• CW direction in complex plane becomes CCW in 
NC (property i in Section 6.2.).

• For strictly proper functions, L(s) = 0  at the semi-
infinite circle portion of the Nyquist contour.  On 
an NC, this is represented by a horizontal segment 
at -∞ dB starting at  L(j∞)  and ending at L(-j∞).  
The width of the segment is equal to                
(no. of poles - no. of zeros)×180°.

• There’s a LEFT turn at point B’. Why?
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Single-sheeted plot. Multiple-sheeted plot.
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What about stability?

From Criterion 1, since the system is open-loop stable (p = 0), we 
must reduce the gain (i.e., shift the plot down vertically) to 
eliminate any crossings.  If we reduce the gain by 9.5 dB (a factor 
of 3 approximately), the plot will be just below the rays R0 and 
R1.  Hence, we conclude that the closed-loop system is stable if  
k<1000.
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In control design, it is customary to plot only half Nyquist plots 
(i.e., the Bode plot), taking advantage of conjugancy of transfer 
functions with real coefficients.  Conjugancy can also be 
exploited with Nichols plots.  In this example, the half-plot shown 
below indicates a single positive crossings or equivalently a total 
of two positive crossings for the full plot.

Special care must be taken when the loop has integrators, as in 
the following example.
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Example 2.  Consider a unity feedback system that has the 
following stable open-loop function

The plot on a single-sheeted Nichols chart is shown below for k = 1.
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Note plot at +∞ dB.  The Nyquist plot has a semi-infinite circle for 
each integrator (or other jω-axis poles) in  L(s)  which translates 
into segments at +∞ dB on a Nichols chart.  Specifically, a Nichols 
plot will have a 180° wide horizontal segment at +∞ dB for each 
jω-axis pole in  L(s).

There is a rather simple rule for drawing (or visualizing) such 
segments: first draw the basic (Bode) plot from ω→0+ up to very 
large frequency, then connect to it a 180°-wide horizontal segment 
(for each integrator) such that left edge of the segment ends at
the point L(j0+).  In this example we have a single integrator 
implying a segment 180°-wide attached to L(j0+) at -90° and at 
|L(j0+)| → ∞ dB.  This segment should then start at +90° and end 
at -90°.  However, our charts do not include positive phases.  
Hence, we start the segment at -270° and continue toward -360°, 
then jump to 0° and continue to -90°, totaling 180°.  Note that you 
need not physically draw these segments; it suffices to attach 
imaginary segments to the actual plot when counting crossings for 
stability analysis (next figure). 
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Single-sheeted plot.

What about stability?

There are no crossings of  R0.  If 
the gain is increased, the plot will 
eventually cross it twice.  This 
happens when  k = 100 (40 dB).  
Hence, the system is closed-loop 
stable for  k<100.  If k>100, there 
are two positive crossings or two 
unstable closed-loop poles. 
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In certain cases with poles on the jω-axis, the plot may appear to 
be tangential to R0 in which case it may not be clear how to 
count crossings. For example, consider the open-loop function

( ) , 0.2( 1)

k
L s k

s s
= >

+

As ω→0, ∠L(jω) → -180° and |L(jω)| → ∞.  To correctly count 
any crossings, you need to realize that in fact  L(jω) does not lie 
on  R0 at infinity, it is only tangential to it.  Specifically, here

Although the real part is at -∞, there is always a non-zero 
imaginary part as well (of course it is much smaller in magnitude 
compared to the real part).   Hence, the plot does not lie on the 
ray  R0 as ω→0+ and it is possible to count crossing.  Another way 
to interpret the type of crossing is by figuring the phase at ω→0+.
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6.5. Robust Stability Criterion1,2

In many physical situations, the actual plant dynamics are known
to belong to a set (family) of plants P. The notion of robust 
stability in QFT amounts to checking stability using one nominal 
loop, where P0(s)∈P is termed the nominal plant, and then 
demonstrating stability of the whole set P by some argument 
involving the nature of P.  This property is commonly referred to 
as robust stability.

1. Jayasuriya, S., 1993, “Frequency domain design for robust performance under 
parametric, unstructured, or mixed uncertainties,” ASME J. of Dynamic 
Systems, Measurement, and Control, Vol. 115, pp. 439-451. 

2. Cohen, N., et al., “Stability analysis using Nichols charts”, Int. J. Robust and 
Nonlinear Control, Vol 4(3), pp. 3-20, 1994.



2/15/2005 6-20 Copyright ©2005 (Yossi Chait)

At each point  s = jω on the Nyquist contour, the responses of  
L(jω) fill in a neighborhood of the nominal response L0(jω).  The 
collection of all the responses of the plant P(jω) is called a 
template P(ω).  Assuming the controller to be fixed, the 
geometric properties of the collection of all the responses of 
L(jω) is the same as that of the template P(ω).   The shape of the 
template can range from a non-connected region to a convex 
region (see figure below).

 connected
template

convexsimply connected
template

disknon-connected
template template template

Various templates.
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For design purposes, one typically enlarges the template into a 
simply connected region (roughly speaking, it is made of a single 
“piece” and has no holes).  Another possibility is to define the 
template as the convex hull of the region (in a convex set any 
two points in the set can be connected via a line).  The most 
conservative, yet most computationally tractable, approach
would be to turn the region into a disk (non-parametric model). 

As we traverse the Nyquist contour, the union of these templates
is called the Nichols envelope.  Note that templates unify the 
way QFT treats uncertainty since parametric, non-parametric or 
mixed uncertainty plant models all have a similar frequency 
response representation.  If your template has holes, the Toolbox 
algorithms will, roughly speaking, automatically “fill in” and 
assume that no holes exist.
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The following is the Nichols chart robust stability criterion used in 
QFT.  The loop transfer function L(s) is assumed to belong to a 
set L.  In addition to the trivial assumption of no unstable 
(including jω-axis) pole/zero cancellation in any L(s) in the set, 
the criterion requires that L belongs to one of the following:

Group A: (1) L(s) is strictly proper, (2) the uncertain 
parameters belong to a compact and simple connected set, (3) 
the coefficients of the numerator and denominator of L(s) 
depend continuously on the uncertain parameters, and (4) the 
coefficients of the highest degree s terms in the numerator 
and denominator of L(s) cannot vanish.  

Group B: (1) at each fixed frequency, the responses of all 
L(jω) form a simple-connected set in the complex plane, and 
(2) the number of unstable poles in L(s) is fixed.
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Criterion 2. Assume that the uncertain set L belongs to one of 
the above groups.  Let  L0(s) = CP0(s)∈L denote the nominal 
loop.  The feedback system is robust stable if:

The nominal closed-loop system corresponding to L0(s) is 
stable and L0(jω) satisfies its bounds (i.e., the single-
sheeted Nichols envelope does not intersect the point q).

The condition that the single-sheeted Nichols envelope does not 
intersect the point q is the same as requiring that 1+L(jω)≠0 for 
all  L0(s)∈L , ω ≥ 0 . 
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6.6. Homework

Determine closed-loop stability of the following open-loop 
systems using (full or half) Nichols plots (k > 0).
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